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Abstract 

Finance is regarded as the most essential resource for political parties (van Biezen, 2003). The campaign of 

the flag bearers for political parties leave campaign teams wondering how to travel to all the constituencies. 

Commitment to finance political parties in Ghana has remained rhetoric hence the need to minimize cost. This 

research work provides a solution to the problem of presidential aspirants having to tour all the twenty-three (23) 

constituency capitals in the Central Region of Ghana campaigning. Most of the cost incurred by presidential 

candidates as they visit all the constituency capitals in Central Region is as a result of transportation and minimizing 

the distances covered. This problem is formulated as a Travelling Salesman Problem (TSP). TSP involves in finding 

an optimal route for visiting cities and returning to the point of origin. In the development of the algorithm, real road 

lengths were used instead of the norm-1 distances which are widely accepted for the solution of the TSP using 

Simulated Annealing. The formulation of the TSP in this work is based on Symmetric TSP.  

We present the solution based on Simulated Annealing (SA) method. A Mat lab code for the TSP algorithm 

was used to solve the problem of a presidential aspirant visiting all the twenty-three (23) constituency capitals in the 

Central Region of Ghana campaigning. The result obtained in the study showed that the optimal route that can be 

considered is Elmina Essarkyir Apam Winneba Potsin Awutu Breku Kasoa Agona Swedru Agona Nsaba Afransi 

Asikuma Ajumako Saltpond Assin Foso Dunkwa-onOffin Diaso Twifo Praso Jukwa Assin Breku Nsuaem Kyekyewere 

Abura Dunkwa Abura(Cape Coast) Old Hospital Hill(Cape Coast) Elmina with a total distance of 786km. 

Keywords: Optimal Campaign Visitation, Simulated Annealing (SA) method, Financing, Political Parties 

 

1. INTRODUCTION  

Ghana became the first country in Africa south of the Sahara to gain independence from colonial rule in 

March 6, 1957. The total land area of Ghana is 238,538 square kilometres; the distance from the south to the north 

being 840 kilometres and 554 kilometres from east to west. Ghana is bordered on the east by Togo, West by Cote 

d’ivoire, North by Burkina Faso and South, the Gulf of Guinea. It has a population of 24,658,823 million (2010 

census). Ghana has ten regions namely Central, Ashanti, Western, Eastern, Brong Ahafo, Northern, Upper West, 

Upper East, Volta and Greater Accra region. The Central Region is one of the five regions of Akanland and the 

smallest region in Akanland, and the eight smallest in Ghana.  

Central Region is bordered by Ashanti and Eastern region to its north, Western region to its west, Eastern 

region to it’s east, and to its south by the Atlantic Ocean. Central Region is the home of Akans who are its natives, 

and are 99% of the Central Region’s population. The main means of transport is by road and the road network is 

evenly spread. There is only one airport in the region. This means that it would not be possible to travel from one 

place of the region to another by air. The capital of Central Region is Cape Coast. Cape Coast is the third most 

populous settlement in Akanland, in terms of population, with a population of 217,032 people (2012 census). Cape 

Coast is linked to Accra, the nation’s capital by a first class road and is about one hour and 30 minutes’ drive between 

them at a relatively regular pace. 

Central Region covers an area of 9,826 square kilometers and has a population of 2,201,863 representing 8.9 

per cent of the entire Ghana’s population (2010 census). The region has twenty three (23) constituencies out of the 

two hundred and thirty constituencies in Ghana. The voter population in the region is 1,240,439 according to the 2012 

biometric voter’s register. The twenty three (23) constituencies, their capitals and their respective voter population 

according to the electoral commission are tabulated below. 

 

    Table 1.1: Constituencies, their capitals and voter population in Central Region.              
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CONTITUENCIES CONTITUENCY CAPITAL VOTER POPULATION 

Komenda/Edina/Eguafo/Abrem 

 

Elmina 77,789 

Cape Coast South 

 

Old Hospital Hill, Cape Coast 51,119 

Cape Coast North 

 

Abura 55,115 

Abura/Asebu/Kwamankese 

 

Abura-Dunkwa 59,841 

Mfantseman 

 

Saltpond 80,235 

Ekumfi 

 

Essarkyir 33,557 

Ajumako/ Enyan/ Esiam 

 

Ajumako 60,784 

Gomoa West 

 

Apam 67,117 

Gomoa East 

 

Potsin 48,690 

Gomoa Central 

 

Afransi 36,843 

Effutu 

 

Winneba 47,582 

Awutu /Senya West 

 

Awutu Breku 63,472 

Awutu Senya East 

 

Kasoa 82,223 

Agona West 

 

Agona Swedru 73,188 

Agona East 

 

Agona Nsaba 50,583 

Asikuma/Odoben/Brakwa 

 

Asikuma 59,523 

Assin North 

 

Assin Breku 36,022 

Assin Central 

 

Assin Foso 37,982 

Assin South 

 

Nsuaem Kyekyewere 49,578 

Twifo Atti Morkwaa 

 

Twifo Praso 50,638 

Hemang/ Lower /Denkyira 

 

Jukwa 33,576 

Upper Denkyira East 

 

Dunkwa-On-Offin 50,154 

Upper Denkyira West Diaso 34,828 

 

The total number of registered voters in Central Region as of 2012 presidential elections was 1,240,439.  Out of the 

twenty- three (23) constituencies, the NDC has eighteen (18) members of parliament and the NPP have eight (5) 

The region also has twenty districts. 
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Figure 1.3: Districts in Central Region 

3. METHODOLOGY 

The campaign visitation of presidential aspirants to the constituency capitals in the Central region will be 

modeled as a Travelling Salesman Problem (TSP). The Simulated Annealing Algorithm method which is a meta-

heuristic based search algorithm will be used to solve the TSP model. This is because the Simulated Annealing is 

capable of solving combinatorial optimization problems like the Travelling Salesman Problem (TSP). The sources of 

data are the internet and libraries for the literature review, the electoral commission outfit for voter population in the 

region and the Department of Feeder Road, Cape Coast for inter-constituency capital distances. Combinatorial 

optimization is the process of finding the globally optimal configuration of discrete variables with respect to some 

function of the variables. Many combinatorial optimization problems are very difficult and are NP- hard. A large 

number of combinatorial problems are of practical interest and importance, examples are the Traveling Salesman 

Problem, timetabling, routing and scheduling, and layout and placement problems. In the Travelling Salesman 

Problem (TSP), we are given n nodes and for each pair {i, j} of distinct nodes, a distance𝑑𝑖,𝑗. We desire a closed path 

that visits each node exactly once (that is a salesman tour) and incurs the least cost, which is the sum of the distances 

along the path. 

This task of visiting the constituencies can be modeled as a classical Traveling Salesman problem. An 

aspirant wishes to visit the twenty three (23) constituencies in the central region of Ghana. Minimizing the total travel 

distance to each constituency for campaign purposes saves time and reduces the cost of the campaign trip. The TSP is 

to find the shortest circuitous path connecting n-number of cities. This means that a salesman following that path 

would visit each city only once. For smaller number of cities (n≥ 4) there is the possibility of considering even a 

manual solution of the TSP. However when the number of cities is large (n≥ 10) the method of manual computation 

cannot be applied and computerized methods of finding all routed length can be impractically slow. Manual 

computation is not practical because the number of circuits grows so fast that even for n=25 cities, it would take longer 

than the age of the universe (~10 billion years) to check all paths at a rate of one million paths per second since there 

are (
1

2 
 )𝑛! paths according to Gato(1991). 
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A presidential aspirant’s visit to a constituency comes with a lot of benefits to both the aspirant and the electorate. 

Some of these benefits are catalogued below. 

(i)  It affords the voters an opportunity to have knowledge of issues. Of all the information voters obtain 

through the mass media during a presidential campaign, knowledge about where the candidates stand is 

most vital by Patterson and McClure (1976). 

(ii)  It gives the aspirant a fair idea of the specific challenges in the various constituencies and assures the 

electorate as to how such challenges would be addressed. 

(iii)  The aspirant seizes the opportunity to deliver his/her campaign message or policies and discuss his/her 

policy positions. 

(iv) Some of the electorates get to see the aspirant for the first time as he/she is introduced to the electorates. 

(v) The visit enables the aspirant to canvass for votes. 

(vi)  Party foot soldiers are motivated to hit the campaign trail even in the absence of the aspirant. 

 

3.1 Variants of TSP 

The TSP has provided a test bed for the development of algorithm such as the nearest neighbour rule that approximate 

optimal solutions of combinatorial optimization problems and on the other hand has prompted questions concerning 

the performance of such algorithms. The versatility of the application of TSP is briefly discussed below. 

 

3.1.1 The Vehicle Routing Problem 

The Vehicle Routing Problem (VRP) is the m-TSP, where a demand is associated with each city or customer and each 

vehicle has a certain capacity. As a further constraint to the minimization of the distance covered in a typical TSP, the 

VRP also considers the minimization of the number of vehicles used. The constraints may include the available fuel 

capacity of each vehicle and available time windows for customers. TSP based algorithms have been applied in this 

kind of problem and may also be applied to routing problems in computer networks. (Gerard 1994). 

Figure 3.1 shows an example of Vehicle Routing Problem (VRP) with four routes where the square in the middle 

denotes the source node. 

 

                                                                                                                4 

                                                   1 

 

 

 

                                                                                              2                                            3 

  

 

 

Figure 3.1: A typical solution for a VRP with 4 routes. The square in the middle denotes the source node. 

 

Intrinsically, the VRP is a spatial problem. During the last few decades, however, temporal aspects of routing 

problems have become increasingly important. Specific examples of problems with time windows include bank 

deliveries, postal deliveries, industrial refuse collection, school-bus routing and situations where the customer must 

provide access, verification, or payment upon delivery of the product or service. In these problems customers could 

be served only during certain hours or the day, such as office hours or the hours before the opening of a shop. For 

example, a warehouse may only accept deliveries between 10:00 am and 4:00pm.Much attention however has been 

given to the Vehicle Routing Problem with Time Windows (VRPTW). The time windows can be hard or soft. In the 

hard time window case, if a vehicle arrives too early at a customer, it is permitted to wait until the customer is ready 

to begin service. However, a vehicle is not permitted to arrive at a customer after the latest time to begin service. The 

field of multi-objective optimization is attracting more and more attention, notably because it offers new opportunities 

for defining problems, Jozefowiez (2008). In contrast, in the soft time window case, the time windows can be violated 

at a cost. The VRP can be modeled using the binary variables 𝑥𝑛𝑚 
𝑣  and 𝑦𝑛

𝑣  according to Goel (2006). 𝑥𝑛𝑚 
𝑣  indicates 

whether  𝑚 ∈ ℕ  is visited immediately after node  𝑛 ∈ ℕ  by vehicle                              𝑣 ∈

𝑉  (𝑥𝑛𝑚
𝑣 = 1) 𝑜𝑟 𝑛𝑜𝑡 (𝑥𝑛𝑚

𝑣 = 0).  𝑦𝑛
𝑣 indicates whether node   𝑛 ∈ ℕ is visited by vehicle 𝑣 ∈ 𝑉   (𝑦𝑛

𝑣  =1) or not  (𝑦𝑛
𝑣 =
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0). For each 𝑛 ∈ ℕ  the VRP contains the variables 𝑡𝑛   𝑎𝑛𝑑  𝑃𝑛. If node 𝑛 ∈ ℕ  is visited by a vehicle, 𝑡𝑛  specifies the 

arrival time and 𝑃𝑛 specifies the current load of the vehicle. If no vehicle visits node 𝑛 ∈ ℕ, both 𝑡𝑛  and 𝑃𝑛are without 

meaning. The contribution of each vehicle 𝑣 ∈ 𝑉 to the objective function is 

∑ 𝑦𝑛(0,1)
𝑣

𝑜∈𝑂

𝑃𝑜 − ∑ 𝑥𝑛𝑚
𝑣

(𝑛,𝑚)∈𝐴

𝐶𝑛𝑚
𝑣  

 

The first term represents the accumulated revenue of served orders; the second term represents the accumulated 

costs for the vehicle movements. 

The VRP is maximize  

∑  (∑ 𝑦𝑛(0,1)
𝑣

𝑜∈𝑂𝑣∈𝑉

𝑃𝑜 − ∑ 𝑥𝑛𝑚
𝑣

(𝑛,𝑚)∈𝐴

𝐶𝑛𝑚
𝑣 )    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑥𝑛𝑚
𝑣

(𝑛,𝑚)∈𝐴

 = ∑ 𝑥𝑚𝑛 
𝑣 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉, 𝑛 ∈ ℕ

(𝑚,𝑛)∈𝐴

 

 𝑦𝑛
𝑣 = ∑ 𝑥𝑛𝑚

𝑣

(𝑛,𝑚)∈𝐴

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉, 𝑛 ∈ ℕ 

∑ 𝑦𝑛
𝑣

𝑣∈𝑉

≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ. 

3.1.2 Arc Routing Problems 

Arc Routing Problems (ARPs) are a special kind of vehicle routing problem in which the vehicles are constrained to 

traverse certain arcs, rather than visit certain nodes as in the standard Vehicle Routing Problem. The arcs represent 

streets which require some kind of treatment or service. Examples of ARPs are the Chinese Postman Problem, the 

Rural Postman Problem and the Capacitated Arc Routing Problem. In Arc Routing Problems the aim is to determine 

a least cost traversal of all edges or arcs of a graph, subject to constraints. Compared to more common node routing 

problems, customers are here modeled as arcs or edges. Such problems arise naturally in several applications related 

to garbage collection, mail delivery, snow clearing, meter reading, school bus routing, police patrols etc. In contrast 

to the VRP, in the pickup and delivery problems each transportation request specifies both the locations where the 

load is to be picked up and the locations where it is to be delivered. Each load has to be transported by one vehicle 

from its set of origins to its set of destinations without any transshipment at other locations. 

 

3.1.3 Computer Wiring 

This type of problem is common in the design of computers and digital systems. The systems comprise a number of 

modules which in turn consists of several pins. The physical module position has already been determined. However 

a given subset of pins has to be interconnected by wires. Assuming two wires are attached to each pin in order to avoid 

signal cross talk and to improve ease of wiring, the aim is to minimize the total wire length. Let 𝐶𝑖𝑗 symbolize the 

actual distance between pin i and j. The requirements imply that a minimum Hamiltonian path length must be found. 

This is done by introducing a dummy pin 0 where c0j = cj0 for all j. The problem of wiring thus becomes an (n+1) 

city symmetric TSP. A difficulty may arise if the position of the modules is a variable which must be chosen to 

minimize the total wire length for all subsets of the pins that must be connected (Gerard 1994). 

 

3.1.4 Overhauling gas turbine engines 

An application found by (Gerard 1994) is overhauling gas turbine engines in aircraft. Nozzle-guide vane assemblies, 

consisting of nozzle guide vanes fixed to the circumference, are located at each turbine stage to ensure uniform gas 

flow. The placement of the vanes in order to minimize fuel consumption can be modeled as a symmetric TSP. 

 

 3.1.5 Scheduling of jobs. 

The scheduling of jobs on a single machine given the time it takes for each job and the time it takes to prepare the 

machine for each job is also a TSP. The total time to process each job is minimized. A robot must perform many 

different operations to complete a process. In these 22 applications, as opposed to the scheduling of jobs on a machine, 

we have precedence constraints. This is an example of a problem that cannot be modeled by a TSP but methods used 

to solve the TSP may be adapted to solve this problem (Gerard 1994). 
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3.1.6 Circuit partition  

The cell partition problem is one of the problems reported in kirk patrick (1983). The input to this problem is quite 

similar to that for NOLA. The essential difference is that each circuit element (called a cell) has a size associated with 

it. The cells are to be partitioned into two groups A and B. Let Nets be the number of nets that are in both A and B. 

Let ∆ Size denote the magnitude of the difference in size between A and B. The objective is to find a partition (A, B) 

that minimizes r (A, B) = Nets + ∆ Size. In this measure, Nets and ∆ Size are weighted equally. Kirkpatrick et al. 

assigned different weights to these two components. 

 

3.1.7 Optimal Linear Arrangement (OLA) 

In the optimal linear arrangement (OLA) problem, we are given n circuit elements (cells, boards, chips, etc) and a set 

of nets which interconnect the circuit elements. For any linear ordering of these n elements, the maximum number of 

nets that cross between any pair of adjacent elements is called the density of the linear arrangement. We are required 

to find a linear ordering with minimum density. This problem is identical to the board permutation problem studied in 

Goto (1977) and Cohon (1983). 

 

3.1.8 Ant colonies 

Real ants are capable of finding the shortest path from a food source to the nest (Beckers et al., 1992; Goss et al., 

1989) without using visual cues (Hölldobler and Wilson, 1990). Also, they are capable of adapting to changes in the 

environment; example is finding a new shortest path once the old one is no longer feasible due to a new obstacle 

(Beckers et al., 1992; Goss et al., 1989). Consider a situation where ants move in a straight line that connects a food 

source to their nest. It is well known that the primary means for ants to form and maintain the line is a pheromone 

trail. Ants deposit a certain amount of pheromone while walking, and each ant probabilistically prefers to follow a 

direction rich in pheromone. This elementary behaviour of real ants can be used to explain how they can find the 

shortest path that reconnects a broken line after the sudden appearance of an unexpected obstacle has interrupted the 

initial path. In fact, once the obstacle has appeared, those ants which are just in front of the obstacle cannot continue 

to follow the pheromone trail and therefore they have to choose between turning right or left. In this situation we can 

expect half the ants to choose to turn right and the other half to turn left. A very similar situation can be found on the 

other side of the obstacle. It is interesting to note that those ants which choose, by chance, the shorter path around the 

obstacle will more rapidly reconstitute the interrupted pheromone trail compared to those who choose the longer path. 

Thus, the shorter path will receive a greater amount of pheromone per time unit and in turn a larger number of ants 

will choose the shorter path. Due to this positive feedback (autocatalytic) process, all the ants will rapidly choose the 

shorter path. 

 

3.1.9 Routing Algorithms 

Routing is the process of deciding which path is more suitable and efficient to send a packet from a source to a 

destination and traveling through an unknown number of routers to achieve it. Packets carry a field in their header 

called destination field which carries the IP address of the destination device. A router must look at this field and 

decide which of the next available hop will be picked to efficiently deliver the packet to its final destination. In order 

to do this, a router must look at its router table. The main problem with routers takes place in dynamically changing 

networks where a link failure can affect the performance of the entire network. Static shortest path first would be 

considered a static routing, where an administrator has to configure the network routing and change it manually in 

case a failure or any other negative event takes place in the network. Dynamic Shortest path is a routing algorithm that 

uses Dijsktra’s algorithm to figure out the most optimal path to send a packet from source to destination. 

 

3.2 Methods of Solution of the TSP 

Many attempts have been made at solving the TSP. Here are a few of the popular attempts to solving the problem: 

 

3.2.1 Branch-and-Bound 

The general algorithm finds the global minimum of function 𝑓: 𝑅𝑚 → 𝑅 over an m- dimensional rectangle ℜ𝑖𝑛𝑖𝑡 . For 

a rectangle ℜ ⊆ ℜ𝑖𝑛𝑖𝑡  we define 

Φ𝑚𝑖𝑛(ℜ𝑖𝑛𝑖𝑡) = 𝐦𝐢𝐧
                                       𝒒∈𝕽

𝒇(𝒒). 
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Then the algorithm computes  Φ𝑚𝑖𝑛(ℜ𝑖𝑛𝑖𝑡) to within an absolute accuracy of  ∈> 0, using two functions 

 Φl𝑏(ℜ) and Φ𝑢𝑏(ℜ) defined over  {ℜ  ⎸ℜ ⊆ ℜ𝑖𝑛𝑖𝑡}. These two functions satisfy the following conditions. 

i).  Φl𝑏(ℜ) ≤ Φ𝑚𝑖𝑛(ℜ) ≤ Φ𝑢𝑏(ℜ). Thus the functions  Φl𝑏(ℜ) and Φ𝑢𝑏(ℜ) computes a lower and upper bound 

respectively on Φ𝑚𝑖𝑛(ℜ). 

ii). As the maximum half- length of the sides of ℜ, denoted by size (ℜ), goes to zero, the difference between upper 

and lower uniformly converges to zero, that is  ∀∈> 0 ∃ 𝛿 > 0  such that  ∀ℜ ⊆ ℜ𝑖𝑛𝑖𝑡 , size (ℜ) ≤ 𝛿 ⇒ Φ𝑢𝑏(ℜ) −

 Φl𝑏(ℜ) ≤∈ . 

The algorithm is as follows: 

𝑘 = 0; 

𝐿o
′ = {ℜ𝑖𝑛𝑖𝑡}; 

𝐿o = Φ𝑙𝑏{ℜ𝑖𝑛𝑖𝑡}; 

𝑈o = Φ𝑢𝑏{ℜ𝑖𝑛𝑖𝑡}; 

While   U𝑘 − L𝑘 >∈, { 

                               Pick R ∈ L𝑘
′  such that  Φl𝑏(ℜ) = L𝑘; 

Split ℜ along one of its longest edges into  ℜ𝐼 and ℜ𝐼𝐼; 

            Form  L𝑘+1
′ , from 𝐿𝑘

′  by removing ℜ𝑘 and adding  ℜ𝐼 and ℜ𝐼𝐼; 

                              L𝑘+1: = 𝑚𝑖𝑛ℜ∈𝐿𝑘+1
′ Φ𝑙𝑏(ℜ); 

                              U𝑘+1: = 𝑚𝑖𝑛ℜ∈𝐿𝑘+1
′ Φ𝑢𝑏(ℜ); 

   𝑘: = 𝑘 + 1; } 

3.2.2 Genetic Algorithm 

The genetic algorithm (GA) is an evolutionary algorithm inspired by Darvin (1859) and recently discussed by Dawkins 

(1986). Holland (1975) invented Genetic Algorithm as an adaptive search procedure. There has been a lot of intensive 

research on the use of GA to solve problems such as the TSP and transportation Problem by (Rachev and Ruschendorf 

1993, Datta 2000). Generalized chromosome genetic algorithm (GCGA) was proposed for solving generalized 

traveling salesman problems (GTSP). Theoretically, the GCGA could be used to solve classical traveling salesman 

problem (CTSP) by Yang (2008).  According to Amponsah and Darkwah (2007), the GA has the following simulations 

of the evolutionary principles: 

 

Table 3.1: The relationship between Evolution and Genetic Algorithm. 

Evolution Genetic Algorithm 

An individual is a genotype of the species. An individual is a solution of the optimization 

problem. 

Chromosomes define the structure of an individual. Chromosomes are used to represent the data structure 

of the solution. 

Chromosome consists of sequence of cells called genes 

which contain the structural information. 

Chromosome consists of a sequence of gene species 

which placeholder boxes are containing string of data 

whose unique combination gives the solution value. 

The genetic information or trait in each gene is called 

an allele. 

An allele is an element of the data structure stored in a 

gene placeholder. 

Fitness of an individual is an interpretation of how the 

chromosomes have adapted to the competition 

environment. 

Fitness of a solution consists in evaluation of measures 

of the objective functions for the solution and 

comparing it to the evaluations for other solutions. 

A population is a collection of the species found in a 

given location. 

A population is a set of solutions that form the domain 

search space. 

A generation is a given number of individuals of the 

population identified over a period of time. 

A generation is a set of solutions taken from the 

population (domain) and generated at an instant of time 

or in an iteration. 

Selection is pairing of individuals as parents for 

reproduction. 

Selection is the operation of selecting parents from the 

generation to produce offsprings. 
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Crossover is mating and breeding of offspring by pairs 

of parents whereby chromosome characteristics are 

exchanged to form new individuals. 

Crossover is the operation whereby pairs of parents 

exchange characteristics of their data structure to 

produce two new individuals as offsprings. 

Mutation is a random chromosomal process of 

modification whereby the inherited genes of the 

offspring from their parents are distorted. 

Mutation is random operation whereby the allele of a 

gene in a chromosome of the offspring is changed by a 

probability pm. 

Recombination is a process of nature’s survival of the 

fittest. 

Recommendation is the operation whereby elements 

of the generation and elements of the offspring form an 

intermediate generation and less fit chromosomes are 

taken from the generation. 

 

Given a population at time t, genetic operators are applied to produce a new population at time t+1. A step-wise 

evolution of the population from time t to t+1 is called a generation. The Genetic Algorithm for a single generation is 

based on the general GA framework of Selection, Crossover, Mutation and Recombination. 

 

3.2.2.1 Representation of individuals 

For the purpose of crossover and mutation operation the variables in the genetic algorithm may be represented by 

amenable data structure. Suppose we have the search space 𝑥 = 0, 1, 2, … , 10  then the 𝑥 values form the individuals. 

The elements of the search space in a binary sequence are encoded by expressing 𝑥 = 10 𝑎𝑛𝑑 𝑥 = 0 in the binary 

sequence to obtain 10 = 10102  𝑎𝑛𝑑 0 = 00002. Thus 𝑥 = 10 is an individual and 1010 is its chromosome 

representation. The chromosome has 4 genes placeholders for the alleles. The allele information in the genes will be 

the binary numbers 0 and 1. The chromosome for 𝑥 = 9 is therefore  

1 0 0 1 

 

There are 24 permutations for a binary string of length 4. These 24 permutations consist of both infeasible and feasible 

solutions. There are 11 feasible solutions which constitute the search space and the rest for the infeasible set. Since 

the solution set is restricted to the integers we look for suboptimal solution. In general the data structure used for the 

representation of individual depends on variables of the problem at hand. 

 

3.2.2.2 Fitness function 

This is the measure associated with the collective objective functions of the optimization problem. The measure 

indicates the fitness of a particular chromosome representation of a particular individual (solution). In the TSP, the 

fitness function is the sum of the path between the cities.  

                       f = ∑ 𝑑(𝑐𝑖 , 𝑐𝑖+1
𝑛−1
𝑖=1 ) 

                           𝑑(. ) is a distance function 

                            𝑛 is the number of cities 

                            𝑐𝑖 is the 𝑖𝑡ℎ city. 

 

3.2.2.3 Initial population 

A genetic algorithm begins with a population of potential solutions. These solutions are encoded in chromosomes. For 

function optimization, the solution 𝑥 in the objective function 𝑓(𝑥) will be encoded in a chromosome consisting of 

binary string. Thus  𝑥 = 13 is represented as             

 𝑥 = 1310 = 11012. For a tour of five cities in the TSP, the index  1,2,3,4,5 may be used for the cities and represent 

a tour by the permutation 𝑇 = [1 ,2 ,3, 4, 5]. Each potential solution must be a feasible solution as well as being a 

unique solution. 

 

3.2.2.4 Population size 

The population size indicates how much of the search space the GA will search in each iteration. Smaller size could 

mean the algorithm takes smaller a shorter time to find the optimal solution. Similarly when the size is large the 

algorithm take a longer time in sampling the large number of chromosomes in order to obtain the best chromosome. 
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Research efforts are needed to establish the relationship between the population size, the number of variables in the 

algorithm and the number of possible states in the solution space. 

 

3.2.2.5 Selection process   

The general selection process involves reproduction, crossover and mutation operations. The selection process is used 

to generate a new population from the current one. The objective is to select individuals with high fitness. It is used 

for selecting individuals for crossover and mutation. The following are some selection processes used; 

 

3.2.2.5.1 Reproduction (Elitist) selection 

A percentage of the current population which highly fits is copied directly as part of the new generation 

 

3.2.2.5.2 Proportional Fitness (Roulette wheel) selection. 

This is biased towards chromosomes with best fitness values. However a wide range of chromosomes are selected. In 

the first stage, a roulette wheel is constructed by computing the relative fitness of each chromosome as 

𝑤𝑖 =
𝑓𝑖

∑ 𝑓𝑘
𝑛
𝑘=1

⁄  

Where 𝑓𝑘 is the fitness of  𝑘𝑖𝑡ℎ chromosome? We then find the cumulative fitness (𝑐𝑗) 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ chromosome as 

𝑐𝑗 = ∑ 𝑤𝑖

𝑗

𝑖=1
 

This creates the roulette wheel. In the second stage a random number 𝑟𝑗 is chosen and if  𝑟𝑗 > 𝑐𝑗 then the 𝑖𝑡ℎ 

chromosome is selected. The above calculation is based on maximization problems. For minimization problem define 

𝐹𝑖 = (𝑓𝑚𝑎𝑥 − 𝑓𝑖) + 1 

𝐴𝑛𝑑    𝑤𝑖 =
𝐹𝑖

∑ 𝐹𝑘
𝑛
𝑘=1

⁄  

Where 𝑓𝑚𝑎𝑥 is the maximum fitness of all chromosomes. 

𝐹𝑘  is the reverse magnitude fitness. 

 

Selection is a process of choosing a pair of organism to reproduce. The selection function can be any increasing 

function and proportional fitness selection is a clear example. 

 

3.2.2.5.3 Tournament Selection 

Two chromosomes are chosen at random. The one with the higher fitness is selected. The process is repeated until the 

required numbers of chromosomes are obtained. 

 

3.2.2.5.4 Random selection 

Chromosomes may be selected randomly irrespective of their fitness. 

 

3.2.2.6   Crossover. 

After the required selection process the crossover is used to divide a pair of selected chromosomes into two or more 

parts. Parts of one of the pairs are joined to parts of the other chromosome with the requirement that the length should 

be preserved. The point between two alleles of a chromosome where it is cut is called crossover point. There can be 

more than one crossover point in a chromosome. The crossover point, I  is the space between the allele in the 𝑖𝑡ℎ 

position and the one in  (𝑖 + 𝐼)𝑡ℎ position. For two chromosomes the crossover point are the same and the crossover 

operation is the swapping of similar parts between the two chromosomes. The crossover operation may produce new 

chromosomes, which are less fit. In that sense the crossover operation results in non-improving solution. 

 

3.2.2.6.1 Single point crossover 

A single point along the chromosome is selected. The parts of the parents on the left or right of the crossover point are 

swapped to get new chromosomes.  
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3.2.2.6.2 Double point crossover 

Two points are chosen as crossover points. This separates the chromosomes into three parts. The middle parts are 

swapped to obtain new chromosomes. 

 

3.2.2.6.3 Uniform crossover. 

Single alleles in the same position are considered for swapping. The probability of selecting an allele for swapping is 

called Mixing Rate. Mixing rates are set for the allele positions. Random numbers are then generated and a position 

satisfying the mixing rate has the allele in the two chromosomes swapped. Crossover operation is an explanatory 

operation that allows the GA to take ‘large jumps’ during the search. As convergence is approached the explanatory 

power of the crossover diminishes. 

 

3.2.2.7 Mutation 

Mutation operation is performed on the individual chromosome whereby the alleles are changed probabilistically. 

 

3.2.2.7.1 Random swap mutation 

In random swap two loci (position) are chosen at random and their values swapped. 

 

3.2.2.7.2 Move-and-insert gene mutation 

Using move-and-insert, a locus is chosen at random and its value is inserted before or after the value at another 

randomly chosen locus. 

 

3.2.2.7.3 Move-and-insert sequence mutation 

Sequence mutation is very similar to the gene move-and-insert but instead of a single locus a sequence loci is moved 

and inserted before or after the value at another randomly chosen locus. 

 

3.2.2.7.4 Uniform mutation probability  

A probability parameter is set and for all the loci an allele with greater or same probability as the parameter is mutated 

by reversing its allele. 

 

3.2.2.8 Termination conditions 

The algorithm terminates when a set of conditions are satisfied. At that point the solution with highest fitness among 

the current generation of the population is taken as the global solution or the algorithm may terminate if one or more 

of the following are satisfied; 

(i) A specified number of total iteration is completed. 

(ii) A specified number of iteration is completed within which the solution of best fitness has not changed. 

(iii) The standard deviation of the generation of the population approaches a given large value. 

(iv) The average fitness of the generation of population does not differ significantly from the solution of best 

fitness. 

 

Goldberg 1989 presented a Standard Genetic Algorithm, which was also called Simple Genetic Algorithm (SGA). It 

is an algorithm that captures the most essential components of every genetic algorithm. The steps in SGA are; 

(i) Start with a population of n random individuals (𝑥) each with L-bit chromosome representation. 

(ii) Calculate the fitness 𝑓(𝑥) of each individual. 

(iii) Choose, based on fitness, two individuals and call them parents. Remove the parents from the 

population. 

(iv) Use a random process to determine whether to perform crossover. If so, refer to the output of the 

crossover as children. If not, simply refer to the parents as the children. 

(v) Mutate the children probability  𝑃𝑚 of mutation for each bit. 

(vi) Put the children into an empty set called the new generation. 

(vii) Return to step ii) until the new generation contains n individuals. Delete one child at random if n is 

odd. Then replace the old population with the new generations. Return to step i). 
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The Simple Genetic algorithm can be summarized in the following steps. 

Table 3.2: Summary of steps in SGA. 

Step 1: Code the individual of the search space. 

Step 2: Initialize the generation counter (g=1). 

Step 3: Choose initial generation of population (solution). 

Step 4: Evaluate the fitness of each individual in the population. 

Step 5: Select individuals of best fitness ranking by fitness proportionate probability. 

Step 6: Apply crossover operation on selected parents. 

Step 7: Apply mutation operation on offspring 

Step 8: Evaluate fitness of offspring 

Step 9: Obtain a new generation of population by combining elements of the offspring and the old generation by 

keeping the generation size unchanged  

Step 10: Stop, if termination condition is satisfied 

Step 11: Else  g = g + 1 

 

3.2.3 Omicron Genetic Algorithm 

The literature in evolutionary computation has defined a great variety of Gas that maintain the same philosophy of 

varying operators and adding different principles like elitism in [Goldberg, (1989) and 𝑀∙∙𝑢ℎ𝑙𝑒𝑛𝑏𝑒𝑖𝑛 and Hans-

Michael Voigt, (1995)]. Using the Simple Genetic Algorithm as a reference, this section presents a new version, the 

Omicron Genetic Algorithm (OGA), a Genetic Algorithm designed specifically for the TSP. 

 

3.2.3.1 Codification 

The OGA has a population P of p individuals or solutions, as the SGA does. Every individual 𝑃𝑥 𝑜𝑓 𝑃 is a valid TSP 

tour and is determined by the arcs (𝐼, 𝑗) that compose the tour. Unlike the SGA, that uses a binary codification, the 

OGA uses an n-ary codification. Considering a TSP with 5 cities 𝑐1, 𝑐2, 𝑐3, 𝑐4 𝑎𝑛𝑑 𝑐5, the tour defined by the arcs 

(𝑐1, 𝑐4), (𝑐4, 𝑐3), (𝑐3, 𝑐2), (𝑐2, 𝑐5)𝑎𝑛𝑑 (𝑐5, 𝑐1) will be codified with a string containing the visited cities in order, 

which is [𝑐1; 𝑐4; 𝑐3; 𝑐2; 𝑐5]. 

 

3.2.3.2 Reproduction 

The OGA selects randomly two parents (F1 and F2) from the population P, as does an SGA reproduction. The 

selection of a parent is done with a probability proportional to the fitness of each individual  𝑃𝑥, where fitness (𝑃𝑥) ∝

1 𝑙(⁄ 𝑃𝑥). Unlike the SGA, where two parents generate two offspring, in the OGA, both parents generate only one 

offspring. In the SGA, P offspring are obtained first to completely replace the old generation. In the OGA, once an 

offspring is generated, it replaces the oldest element of P. Thus, the population will be a totally new one in P iterations 

and it would be possible to consider this population a new generation. In conclusion, the same population exchange 

as in the SGA is made in the OGA, but in a progressive way. 

 

3.2.3.3 Crossover and Mutation  

The objective of crossover in the SGA is that the offspring share information of both parents. In mutation, the goal is 

that new information is added to the offspring, and therefore is added to the population. In the SGA, the operator’s 

crossover and mutation are done separately. To facilitate the obtaining of offspring that represent valid tours, the 

crossover and the mutation operators are done in a single operation called Crossover-Mutation in OGA. Even so, the 

objectives of both operators previously mentioned will stay intact. To perform Crossover-Mutation, the arcs of the 

problem are represented in roulette, where every arc has a weight w or a probability to be chosen. Crossover-Mutation 

gives a weight w of one to each arc (𝑖; 𝑗) belonging to set A, that is 𝑤𝑖𝑗 = 1 ∀ (𝑖; 𝑗) ∈ 𝐴. Then, a weight of O 2⁄  is 

added to each arc (𝑖; 𝑗) of F1, that is 𝑤𝑖𝑗 = 𝑤𝑗𝑖 + O 2⁄  ∀ (𝑖; 𝑗) ∈ 𝐹1, where Omicron  (O) is an input parameter of 

the OGA. Analogously, a weight of O 2⁄  ∀𝑗 ∈ 𝑁𝑖 is added to each arc (𝑖; 𝑗) of F2. Iteratively, arcs are randomly taken 

using the roulette to generate a new offspring. While visiting city i, consider Ni as the set of cities not yet visited and 

that allows the generation of a valid tour. Therefore, only the arcs (𝑖; 𝑗)  ∀𝑗 ∈ 𝑁𝑖 participate in the roulette, with their 

respective weights 𝑤𝑖𝑗 . Even so the crossover is done breaking the parents and interchanging parts in the SGA instead 

of taking arcs iteratively with high probability from one of the parents in the OGA, the philosophy of both crossover 
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operators is the same. To generate an offspring SI, an arc of one of the parents will be selected with high probability 

(similar to crossover). But it is also possible to include new information since all the arcs that allow the creation of a 

valid tour participate in the roulette with probability greater than 0 (similar to mutation). The value O 2⁄  is used because 

there are two parents, and then            𝑤𝑚𝑎𝑥 = 𝑂 + 1 can be interpreted as the maximum weight an arc can have in 

the roulette (when the arc belongs to both parents). When the arc does not belong to any parent, it obtains the minimum 

weight  𝑤𝑚𝑖𝑛 in the roulette, that is 𝑤𝑚𝑖𝑛 = 1. Then, O determines the relative weight between crossover and mutation. 

Formally, while visiting city i, the probability of choosing an arc (𝑖; 𝑗) to generate the offspring SI is defined by 

equation (1) below; 

 𝑃𝑖𝑗 = {

𝑊𝑖𝑗

∑∀ℎ∈𝑁𝑖
𝑊𝑖𝑗

    𝑖𝑓 𝑗 ∈ 𝑁𝑖

0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

3.2.3.4 Example 

To clarify the previous procedure, an example considering the TSP with 5 cities mentioned above is presented next. 

𝑂 = 4 𝑎𝑛𝑑 𝑝 = 4 are considered for this case. 

 

3.2.3.4.1 Reproduction 

The example assumes an initial population  𝑃 = {𝑃𝑥} composed of 4 randomly selected individuals with their 

respective fitness’s 𝑓𝑥. This initial population is presented next.  

First randomly chosen individual: P1={𝑐1; 𝑐4; 𝑐3; 𝑐2; 𝑐5} 𝑤𝑖𝑡ℎ 𝑓1 = 10.  

Second randomly chosen individual: P2= {𝑐1; 𝑐3; 𝑐2; 𝑐5; 𝑐4}𝑤𝑖𝑡ℎ 𝑓2 = 8. 

Third randomly chosen individual: P3={𝑐3; 𝑐5; 𝑐1; 𝑐2; 𝑐4}𝑤𝑖𝑡ℎ 𝑓3 = 1. 

Fourth randomly chosen individual: P4= {𝑐2; 𝑐5; 𝑐4; 𝑐1; 𝑐3}𝑤𝑖𝑡ℎ 𝑓4 = 5. 

Two parents are randomly selected through roulette, where the weights of the individuals in the roulette are their 

fitness. It is assumed that individuals P1 and P4 are selected to be parents. 

F1= {𝑐1; 𝑐4; 𝑐3; 𝑐2; 𝑐5} = {(𝑐1; 𝑐4); (𝑐4; 𝑐3); (𝑐3; 𝑐2); (𝑐2; 𝑐5); (𝑐5; 𝑐1)}  

F2= {𝑐2; 𝑐5; 𝑐4; 𝑐1; 𝑐3} = {(𝑐2; 𝑐5); (𝑐5; 𝑐4); (𝑐4; 𝑐1); (𝑐1; 𝑐3); (𝑐3; 𝑐2)}. 

 

3.2.3.4.2 Crossover- Mutation. 

Iteration 1: First, an initial city is randomly chosen to perform Crossover- Mutation. 𝑐4 is assumed as the initial city. 

Then, Nc4 is composed by [c1; c2; c3; c5], that is the set of not yet visited cities. The arc (c4; c2) has a weight of 1 

in the roulette because it does not belong to any parent. Arcs {(c4; c3); (c4; c5)} have a weight of  1 + O 2 = 3⁄  in 

the roulette because they belong to one parent. Finally, the arc (c4; c1) has a weight of  1+O = 5 in the roulette because 

it belongs to both parents. It is assumed that the arc (c4; c3) is randomly chosen through the roulette. 

 

3.2.3.4.3 Crossover- Mutation. 

Iteration 2: From c3 we do crossover mutation operation. Nc3 is composed by {c1; c2; c5}. The arc (c3; c5) has a 

weight of 1in the roulette because it does not belong to any parent. The arc (c3; c1) has a weight 1 + O 2 = 3⁄  in the 

roulette because it belongs to one parent. Finally, the arc (c3; c2) has a weight of 1+O = 5 in the roulette because it 

belongs to both parents. It is assumed that the arc (c3; c2) is randomly chosen through the roulette. 

 

3.2.3.4.4 Crossover- Mutation. 

Iteration 3: From c2 we do crossover mutation operation. Nc2 is composed by [c1; c5]. The arc (c2; c1) has a weight 

of 1 in the roulette because it does not belong to any parent. Finally, the arc (c2; c5) has a weight of 1+O = 5 in the 

roulette because it belongs to both parents. It is assumed that the arc (c2; c1) is randomly chosen through the roulette. 

 

3.2.3.4.5 Crossover- Mutation. 

Iteration 4: Nc1 is composed by [c5]. The arc (c1; c5) has a weight of  1 + O 2 = 3⁄  in the roulette because it belongs 

to one parent. The arc (c1; c5) is chosen because it is the unique arc represented in the roulette. The new offspring is 

S1= [c4; c3; c2; c1; c5] = {(c4; c3); (c3; c2); (c2; c1); (c1; c5); (c5; c4)}. Notice that S1 has 3 arcs of F1 {(c4; c3); 

(c3; c2); (c1; c5)} and 2 arcs of F2 {(c3; c2); (c1; c5)}. Also, S1 has an arc {(c2; c1)} that does not belong to any 

parent. This shows that the objectives of the operators (crossover and mutation) have not been altered. 
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3.2.3.4.6 Population Update 

The new individual S1 replaces the oldest individual P1. Next, the new population is shown. 

 P1={𝑐4; 𝑐3; 𝑐2; 𝑐1; 𝑐5} 𝑤𝑖𝑡ℎ 𝑓1 = 7.  

P2= {𝑐1; 𝑐3; 𝑐2; 𝑐5; 𝑐4}𝑤𝑖𝑡ℎ 𝑓2 = 8. 

P3={𝑐3; 𝑐5; 𝑐1; 𝑐2; 𝑐4}𝑤𝑖𝑡ℎ 𝑓3 = 1. 

 P4= {𝑐2; 𝑐5; 𝑐4; 𝑐1; 𝑐3}𝑤𝑖𝑡ℎ 𝑓4 = 5. 

The entire procedure above is done iteratively until an end condition is satisfied. 

 

3.3 Simulated Annealing 

Simulated Annealing resulted from observation of the analogy between the physical process of annealing and 

of finding a global optimum for a combinatorial optimization problem (Kirkpatrick et al., (1983) and Cerny (1985)).   

Simulated Annealing is a general purpose combinatorial optimization technique that has been proposed by Kirkpatrick 

et al. (1983). This method is an extension of a Monte Carlo method developed by Metropolis et al. (1953), to determine 

the equilibrium state of a collection of atoms at any given temperature T. Since the method was first proposed in 

Kirkpatrick et al. (1983), much research has been conducted on its use and properties. Most of the papers that report 

on an application of the method deal with problems that arise in the CAD area. This is not surprising as most CAD 

problems are known to be NP-complete, Sahni (1980). Hence, CAD problems are likely targets of solution by heuristic 

methods.   

Simulated annealing as proposed by Kirkpatrick et al. (1983) is a special case of a wider class of adaptive 

heuristics for combinatorial optimization. This wider class is formulated below. The term adaptive, in this context, 

simply means that some of the parameters of the heuristic may be modified. This modification may be done by the 

algorithm itself using some learning mechanism or may be done by the user using his/her own learning mechanism.  

Consider any optimization problem. Suppose we wish to find a solution that minimizes the objective function h ( ) 

subject to certain constraints (a maximization problem may be solved by minimizing the negative of the objective 

function). Solutions that satisfy the constraints are called feasible solutions and a feasible solution with minimum h ( 

) value is called an optimal solution. The optimal value of h ( ) is its minimum value. The general form of an adaptive 

heuristic to find a feasible solution with value close to optimal takes the form shown in Table 3.3 below. The 

significance of the variables, functions, and procedures used in this algorithm are described below: 

 

Table 3.3: The general adaptive heuristic 

Procedure  General Adaptive Heuristic ; 

        { General form of an adaptive heuristic for combinatorial optimization } 

         S  := 𝑆𝑜; {initial solution} 

          Initial heuristic parameters; 

          repeat 

                repeat 

                    NewS  :=  perturb  (S); 

                    if accept (NewS, S ) then S := NewS; 

                 until “time to adapt  parameters”; 

                  AdaptParameters; 

             until “terminating criterion”; 

         end;  {of GeneralAdaptiveHeuristic } 

 

The class of simulated annealing heuristics proposed by Kirkpatrick et al. (1983) is obtained from the general adaptive 

heuristic of Table 1 by making the following parameter selections: 

1) The acceptance function, accept, has the form: 

if  (ℎ (𝑁𝑒𝑤𝑆) < 𝒉 (𝑆))𝒐𝒓 (𝑟𝑎𝑛𝑑𝑜𝑚 <  𝑒(ℎ(𝑆)−ℎ(𝑁𝑒𝑤𝑆))/ 𝑇) 

then accept  := true 

else accept  := false; 
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where  T is a heuristic parameter called “temperature” and random is a uniformly     generated pseudo-random number 

in the range [0, 1] 

2) The “time to adapt parameters” criterion is the number of iterations of the inner repeat loop that have been 

performed since the last adaptation. 

3) The procedure AdaptParameters does the following;  

 

The “temperature”, T, used in the acceptance function is updated to 𝛼∗𝑇 for some constant  𝛼, 0 < 𝛼 < 1 and the 

number, iterations, of iterations of the inner repeat loop that are to be performed before the next adaptation is changed 

to 𝛽∗  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. 𝛽 is a constant that is at least 1. 

4) The “terminating criterion” is when we have used up the amount of computing time we wish to spend. 

 

Substituting these selections into Table 1, the form of simulated annealing heuristic in Table 2 below is obtained. 

Simulated annealing is simpler to use than the general adaptive heuristic as there are fewer decisions to be made. We 

essentially need to determine the following: 

(i) How is 𝑆𝑜 to be generated? 

(ii) What are the values of  𝑇𝑜 ;  𝑖𝑜;  𝛼, 𝑎𝑛𝑑 𝛽. 

(iii)  How much computer time is the heuristic allowed? 

 

These choices have a significant impact on the quality of (that is the value of S at termination) of the solution produced, 

Nahar (1985). Determining optimal choices for these is not possible as the optimal choice depends not only on the 

particular problem being solved but also on the particular instance being solved. The time required to optimize the 

choices is, perhaps, better spent running the algorithm for a longer time. 

 

Table 3.4: Simulated annealing 

Procedure  Simulated Annealing ; 

        { General form of Simulated Annealing } 

         S  := 𝑆𝑜; {initial solution} 

         T :=𝑇𝑜  ;  {initial temperature} 

          iterations := 𝑖𝑜  ; {initial number of iterations of inner loop, ≥ 1 } 

          repeat 

                repeat 

                    NewS  :=  perturb  (S); 

if  (ℎ (𝑁𝑒𝑤𝑆) < 𝒉 (𝑆))𝒐𝒓 (𝑟𝑎𝑛𝑑𝑜𝑚 <  𝑒(ℎ(𝑆)−ℎ(𝑁𝑒𝑤𝑆))/ 𝑇) 

then accept  := true 

else accept  := false; 

         until inner loop has been repeated iterations times; 

          𝑇 ∶= 𝛼∗𝑇; iterations  := 𝛽∗  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

             until “out of time”; 

         end;  {of Simulated Annealing } 

 

Simulated annealing is a heuristic- based search algorithm, motivated by an analogy of physical annealing in solids. 

It is capable of solving combinatorial optimization problem. The method of simulated annealing has been used to find 

the global minima cost configuration for NP- complete problems with many local minima. According to Amponsah 

and Darkwah (2007) the concept of Simulated is derived from Statistical mechanics in the area of natural science. A 

piece of regular metal in its natural state has the magnetic directions of its molecules aligned in a uniform direction. 

In the preparation of alloys the metals are heated to a very high temperature where the molecules acquire higher energy 

state. The basic structure of the metallic bonds break down and magnetic directions of the molecules are oriented 

randomly. Annealing is the slow cooling of the metallic material so that at natural temperature conditions the metal 

will achieve regularity of the alignment of the magnetic direction so as to make the metal stable for use. Hasty cooling 

of solids results in defective crysal structure. In 1953 Metropolis and others recognized the use of Boltzman Law to 

simulate the efficient equilibrium condition of a collection of molecules at a given temperature and thus facilitated 
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annealing. When the metal is heated to higher temperature with higher energy state and it is being cooled slowly, it is 

assumed that for a finite drop in temperature the system state change in the sense that the molecules assume new 

configuration of arrangement. The configuration depends on parameters like temperature, the energy of the system 

and others. Combining the parameters, an energy function is obtained from which the configuration can be obtained. 

Many variations of the SA have evolved. Lin (1994) discovered the hybrid algorithm (IIA), which is based on a hybrid 

mechanism which combines conventional heuristics with low temperature simulated annealing (LTSA). A major 

disadvantage of the technique is that it is extremely slow and hence not suitable for complex optimization problems 

such as scheduling. There are many attempts to develop parallel versions of the algorithm. Many of these algorithms 

are problem dependent in nature, Ram (1996). 

 

In 1983, Kirk Patrick showed how Simulated Annealing of Metropolis (1953) could be adapted to solve problems in 

combinatorial optimization. 

The following analogy was made: 

(i)  a)  Annealing looks for system state at a given temperature and energy. 

b)  Optimization looks for feasible solution of the combinatorial problems. 

(ii)   a)  Cooling of the metal is to move from one system state to another. 

     b)  Search procedure (algorithm scheme) tries one solution after another in order to find the optimal solution. 

(iii)  a)  Energy function is used to determine the system state and energy. 

      b)  Objective (cost) function is used to determine a solution and the objective functions value. 

(iv)  a)  Energy results in evaluation of energy function and the lowest energy state corresponds  to stable state. 

     b)  Cost results in evaluation of objective function and the lowest objective function value corresponds to optimal 

solution. 

(v)  a)  Temperature controls the system state and the energy. 

     b)  A control parameter is used to control the solution generation and the objective function value. 

Simulated annealing (SA) is a generic probabilistic meta-heuristic for the global optimization problem of applied 

mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. 

It is often used when the search space is discrete (example is all tours that visit a given set of cities). For certain 

problems, simulated annealing may be more effective than exhaustive enumeration−provided that the goal is merely 

to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. 

 

3.3.1 Using Simulated Annealing to solve TSP 

To be able to use simulated annealing to find good solutions for the Traveling Salesman Problem it is necessary to 

describe a configuration, a neighbourhood or neighbour generation mechanism and a cost function. The TSP is one of 

the first problems to which simulated annealing was applied serving as an example for both Kirk Patrick et al., (1983) 

and Cerny (1985).  

 
Figure 3.2 Evolution of a Travelling Salesman Problem Solution using Simulated Annealing. 
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Since then the TSP has continued to be a prime test bed for the approach and its variants. Most adaptations have been 

based on the simple schema presented below, with implementations differing as to their methods for generating 

starting solutions (tours) and for handling temperatures, as well as in their definitions of equilibrium, frozen, 

neighbour, and random. Note that the test in Step g is designed so that large steps uphill are unlikely to be taken except 

at high temperatures t. The probability that an uphill move with a given cost ∆ will be accepted declines as the 

temperature is lowered. In the limiting case, when T=0, the algorithm reduces to a randomized version of iterative 

improvement, where no uphill moves are allowed at all. 

 

3.3.2 General schema for a simulated annealing algorithm. 

a. Generate a starting solution S and set the initial solution 𝑆∗ = 𝑆. 

b. Determine a starting temperature T. 

c. While not yet at equilibrium for this temperature, do the following: 

d. Choose a random neighbour 𝑆∗ of the current solution. 

e. Set ∆ = Length (𝑆∗) = Length (S). 

f. If  ≤ 0 (downhill move): 

Set S = 𝑆∗ 

g. If Length (S) < Length (𝑆∗), set 𝑆∗ = 𝑆. 

h. If length (S) < length (𝑆∗) (uphill move): 

Choose a random number r uniformly from [0, 1]. 

If 𝑟 < 𝑒
−∆

𝑇⁄ , set S = 𝑆∗. 

i.End “While not yet at equilibrium ’’ loop. 

j. Lower the temperature T. 

k. End “While not yet frozen” loop. 

l. Return  𝑆∗. 

 

3.3.3 Configuration 

The application of the simulated annealing method to any optimization problem requires definition of four major 

components: 

(i) Problem Configuration: a clear specification of the domain over which the optimal solution is searched. 

Constraint equations are mainly used to express this domain for the optimal solution. 

(ii)  Neighbourhood Configuration: the random method of iteratively perturbing the design vector to create new 

trail points which will be the options presented to the system.  

(iii)  Objective function: (analog of energy) whose minimization is sought by the procedure. This is a scalar 

equation that weighs all of the design variables to provide a measure of goodness for each option. 

(iv)  Annealing Schedule: (analog of temperature) a controlled parameter which tells how the parameter will be 

decremented in each iteration of the outer loop and specify the number of inner loop iterations. 

 

The successful implementation of Simulated Annealing depends on: 

(i) The choice of neighbourhood solutions. 

(ii) The cooling schedule,  which is defined by the following parameters; 

(i) Initial temperature (𝑇𝑜) 

(ii) Final temperature (𝑇𝑓) 

(iii) The temperature update at each iteration. 

(iv) The stopping criterion. 

 

3.3.4 Cooling Schedules 

A cooling schedule is a description of the values of the control parameter and number of transitions performed at each 

value of control parameter by a simulated annealing algorithm. 

The cooling schedule of a simulated annealing algorithm consists of four components: 
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(i) Starting temperature: The starting temperature is an input by the user of the programme. The 

temperature must be high enough to allow a move to almost any neighbourhood state. However, if the 

starting temperature value is too high, then the search can move to any neighbour and thus transform the 

search (at least in the early stages) into a random search. Effectively, the search will be random until the 

temperature is cooled enough to start acting as a simulated annealing algorithm. 

 

(ii) Final temperature: It is usual to let the temperature decrease until it reaches zero. However, this can 

make the algorithm run for a lot longer. In practice, it is not necessary to let the temperature reach zero 

because as it approaches zero, the chances of accepting a worse move are almost the same as the 

temperature being equal to zero. Therefore, the stopping criteria can either be a suitably low temperature 

or when the system is frozen at the current temperature (that is no better or worse moves are being 

accepted). 

 

(iii) Temperature decrement: Once the starting and stopping temperatures are known, we need to get from 

one to the other. Theory states that we should allow enough iteration at each temperature so that the 

system stabilizes at that temperature.  Theory also states that the number of iterations at each temperature 

to achieve this might be exponential to the problem size. As this is impractical, we need to compromise. 

We can either do this by performing a large number of iterations at a few temperatures, a small number 

of iterations at many temperatures or a balance between the two. 

 

(iv) Iterations at each temperature: In our specific TSP, this can only be a finite number of cities that can 

be a link to any one city. The number of iterations of the TSP is therefore unrestricted. The initial 

temperature may be obtained by computing the objective function values of several neighbourhood 

solutions (M) of the initial solution x and taking the difference. 

 

If ∆− is the maximum difference then we may take: 

(i) 𝑇𝑜 =
∆𝑚𝑎𝑥

𝐿𝑛(𝑃)
 , 𝑤ℎ𝑒𝑟𝑒   𝑃 ∈ (0, 1)  𝑠𝑎𝑦 𝑃 = 0.8  𝑜𝑟 

(ii)  𝑇𝑜 =  𝛼∆𝑚𝑎𝑥  , 𝑤ℎ𝑒𝑟𝑒  𝛼 ≥ 1 . 
The final temperature is fixed a priori as a small value and used as stopping criteria alone or with other parameters 

including a given number of iterations. Amponsah (2007) discussed that some of the methods used in updating the 

temperature are: 

(i) 𝑇𝑘+1 =  𝑇𝑘−𝑎 , 𝑤ℎ𝑒𝑟𝑒 𝑎 = 〈
𝑇𝑜−𝑇𝑓

𝑀
〉 𝐿  𝑤ℎ𝑒𝑟𝑒 𝐿 𝑟𝑢𝑛𝑠 𝑎𝑟𝑒 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

(ii)  𝑇𝑘+1 =  
𝑇𝑘

(1+𝛽𝑇𝑘)
 , 𝛽 = 0.02 

(iii) 𝑇𝑘+1 = 𝛽𝑇𝑘  , 𝑤𝑖𝑡ℎ 𝛽 ∈ [0.50, 0.99] 𝑐ℎ𝑜𝑠𝑒𝑛 𝑜𝑛𝑐𝑒 𝑠𝑎𝑦 𝛽 = 0.95. 

 

3.3.5 Solutions and Acceptance Criteria. 

In each step of the algorithm, at every given temperature, a new distance is calculated for a given configuration and 

then the configuration is given a small random disturbance (city swap). The new distance is computed and the 

difference between the newly computed distance and the old distance (𝛿𝑓) is noted. The number of iterations for a 

particular temperature is left out of the algorithm because there are only a finite number of routes joining them. The 

temperature is reduced by a factor until the temperature tit reaches zero. If 𝛿𝑓 ≤ 0, the displacement is accepted. The 

case 𝛿𝑓 > 0 is treated probabilistically. The probability that the configuration is accepted is given in (1). 

𝑃 = exp (−
𝛿𝑓

𝑇
) > 𝑟, 

𝑤ℎ𝑒𝑟𝑒  

                            𝛿            = 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

                            𝑇            = 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑎𝑡𝑢𝑟𝑒 

                         𝑟            = 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1. 
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The probability of accepting a worse move is a function of both the temperature of the system and of the change in 

the objective function. As the temperature of the system decreases, the probability of accepting a worse move is 

decreased. If the temperature is zero, then only better moves will be accepted. 

       The choice of a solution in the neighbourhood of 𝑁(𝑥) of 𝑥 may be: 

(i) one solution at a time. 

(ii) the best subset of solutions from 𝑁(𝑥). 

Simulated annealing has been applied to many engineering problems including scheduling, image correction, 

mechanism synthesis, design of integrated circuits, and path generation for robotic obstacle avoidance. 

 

3.3.6 Combining Simulated annealing with other methods. 

Simulated annealing can be used to either provide a good starting configuration for another method or improve upon 

a configuration found by another method. The former situation might be where simulated annealing generates a 

starting point for a branch and bound exact algorithm. The latter requires that the initial control parameter value be 

lower than normal otherwise the starting configuration’s good features are quickly lost as cost increasing transitions 

are possibly accepted. 

 

3.4 Model and Algorithms 

3.4.1 Distance 

The distance between two objects could be described as the length of physical separation between the objects. In the 

most general terms however, it is a numerical description of this separation referring to length, period of time etc. This 

is a scalar quality. In geometry, the minimum distance between two points is the length of the line segments joining 

the two points. The distance between two points (𝑥1, 𝑦1,𝑧1) and (𝑥2, 𝑦2, 𝑧2) in three dimensional spaces is given by 

Deza( ) as: 

𝑑 = √(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2 =  √(𝑥1 − 𝑥2) + (𝑦1 − 𝑦2) + (𝑧1 − 𝑧2) …………………(1) 

For two points in the xy- plane, ∆𝑧 = 𝑧1 = 𝑧2 = 0 and equation (1) holds. 

 

3.4.2 Types of Distances 

The distance between two points is usually given by the 2-norm distance called the Euclidean distance. Table 3.5 

below shows other distances in n dimensional space given by other norms according to Deza (1985). 

 

Table 3.5:  Types of Distances 1 

 

1-norm distance 

 

= ∑ ⎸𝑥𝑖 − 𝑦𝑖

𝑛

𝑖=1

⎸ 

 

 

2-norm distance 

 

  

= 𝑚 〈∑ ⎸𝑥𝑖 − 𝑦𝑖⎸
2 

𝑛

𝑖=1

〉1 2⁄  

 

 

p-norm distance 

 

= 𝑚 〈∑ ⎸𝑥𝑖 − 𝑦𝑖⎸𝑝 

𝑛

𝑖=1

〉1 𝑝⁄  

 

  

 

Infinity norm distance 

 

= lim
𝑝→∞

〈∑ ⎸𝑥𝑖 − 𝑦𝑖⎸𝑝 

𝑛

𝑖=1

〉1 𝑝⁄  

= max( ⎸𝑥1 − 𝑦1⎸, ⎸𝑥2 − 𝑦2⎸, … . . , ⎸𝑥𝑛 − 𝑦𝑛⎸) 
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The 2-norm distance is the type of distance that has been used in many TSP problems and it represents the shortest 

distance between any two points and is the distance that would have been measured physically with say a ruler. The 

use of such a distance type in the TSP assumes that the two points (cities) are connected by a perfectly straight road 

or other transportation means. This is not practical for our purposes. The 1-norm is also referred to Manhattan distance 

or taxicab norm (since a taxi plying on rectangular parallel roads such as in Manhattan cannot reach another point on 

a different street by taking the shortest route to it by going through lots, blocks, buildings or cuts through roads). See 

Figure 3.3 for a graphical illustration of both norms. 

 

3.4.3 Distance vs. Displacement 

For the purposes of this thesis however, we shall restrict ourselves to the actual road distances between cities as 

represented on the Central Region section on the map of Ghana. In figure 3.3, the two cities A and B are linked by a 

road represented by a solid line from A to B. The distance traveled by a vehicle using the road is then represented by 

a broken line along the road. The displacement however represents the direct link calculated by the 1 norm, which is 

not representative of the practical distance travel. Candidate methods for this are repetitive use of one-to-all shortest 

path algorithms such as Dijkstra’s algorithm, use of all-to-all shortest path algorithms such as the Floyd- Warshall 

algorithm, and use of specifically designed some-to-some shortest path algorithms (Kim, ). 

                                                                                             A 

 

 

 

 

 

 

            

                                                                                 B 

 

 

 

 

 

 

Figure 3.3: Displacement Vs Distance. 

 

3.4.4 Connectivity of Cities 

In the general TSP there is the assumption that it is possible to reach any and all of the cities from any city. In the 

practical application to our particular problem however, the main means of travel is assumed to be by road and as such 

only cities with direct road links will be considered to have a distance between them. Thus in figure 3.4 below, where 

as there are direct links between A and all other cities, there are no links between B and E or D since all connections 

should be through other cities. 
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Figure 3.4: Sample connection of cities. 

 

3.4.5 The Objective Function 

The object function, which is represented as the total distance covered by a tour is not a function of the coordinates of 

the cities but rather the length of the roads linking the cities 

𝐷 = 𝑚𝑖𝑛 ∑ ∑ 𝑥(𝑖, 𝑗)𝐼(𝑖, 𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

Constrained by 

∑ 𝑥(𝑖, 𝑗) = 1, 𝑖 = 1,2, … , 𝑛

𝑛

𝑖=1

 

∑ 𝑥(𝑖, 𝑗) = 1, 𝑗 = 1,2, … , 𝑛

𝑛

𝑗=1

 

𝑊ℎ𝑒𝑟𝑒 𝐷 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟, 

𝐼𝑖,𝑗  𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑖𝑡𝑖𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗. 

 

3.4.6 The Configuration 

The constituencies are numbered from 1 to 23 and the various distances between the constituencies with direct road 

links modeled into a 23 X 23 matrix with elements representing the length of the road between the constituencies. As 

expected all elements on the diagonal are zero since these represents the distances between the same constituencies. 

Thus 𝐼𝑖,𝑖 = 𝐼𝑗,𝑗 = 0. For any symmetric TSP, 𝐼𝑖,𝑗 = 𝐼𝑗,𝑖 . The configuration is therefore given by a random arrangement 

of the constituencies respecting the road link. 

 

3.4.7 Generating the Configuration 

The configuration is generating from the matrix that models the network of roads linking the constituencies. The 

procedure is given by: 
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(i) Starting from any non-zero element  𝐼𝑖,𝑗 in the matrix and noting the column 𝑗 and row 𝑖 as the starting leg of 

the tour. 

(ii) Move from the  𝐼𝑖,𝑗 elements to another element  𝐼𝑖,𝑘  or  𝐼𝑘,𝑗  also containing a non-zero element. K being a 

column or row respectively. 

(iii)  Repeat step 1 to 2 keeping the recently identified row or column and move to the next element until you 

come back to an element in the starting row or column. 

(iv)  Remembering that there are exactly 𝑛 links for any 𝑛 cities in any TSP, sum the 𝑛 elements identified in the 

tour. 

 

3.4.8 Method of Solution of TSP 

The method used to solve the TSP is based on a simulated annealing process which is performed on tour distances 

generated from actual distances traveled be the aspirants. The following section gives the details of how the tour 

distances were generated. 

 

3.4.8.1 The Tour Distance Pseudo code 

The distances between the constituencies are put into a matrix as shown in table 3.3.4 for the road network shown in 

figure 3.4. The elements in the matrix then represent the distances between the constituencies in the row and column. 

The tour distances generated by following steps: 

Input   : Matrix of city links lengths. 

 Initialize : length = 0, order = [] 

 Select  𝐼𝑖,𝑗  from matrix and set 𝐼 =  𝐼𝑖,𝑗  

 For 𝑒 = 1 to 𝑛 do 

o 𝑙𝑒𝑛𝑔𝑡ℎ =  𝑙𝑒𝑛𝑔𝑡ℎ +  𝐼𝑖,𝑗 , 𝑜𝑟𝑑𝑒𝑟 =  𝑗, 𝑖 

o 𝑖𝑓 𝑒 𝑖𝑠 𝑜𝑑𝑑, 𝑑𝑜 

 Set all elements of column 𝑖 and 𝑗 and all row elements of row 𝑗 to zero 

 Select  𝐼𝑖,𝑗  and set 𝐼 =  𝐼𝑖,𝑗  

o else 

 Set all elements of rows 𝑖 and 𝑗 and all column elements of column 𝑗 to zero 

 Select   𝐼𝑖,𝑗  and set  𝐼 =  𝐼𝑖,𝑗  

o 𝑒𝑛𝑑 𝑖𝑓 𝑙𝑜𝑜𝑝 

o 𝑒𝑛𝑑 𝑓𝑜𝑟 𝑙𝑜𝑜𝑝 

o 𝑝𝑟𝑖𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑟𝑑𝑒𝑟. 

𝑂𝑢𝑡𝑝𝑢𝑡 ∶  𝑡𝑜𝑡𝑎𝑙 𝑡𝑜𝑢𝑟 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡𝑜𝑢𝑟. 

 

3.4.8.1.1 An Example of the Implementation of the Tour Distance Algorithm 

Consider the network of roads in figure 3.4 joining the six cities represented as A, B, C, D, E and F with corresponding 

distances between cities. 
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Figure 3.5: Sample Network of roads making the Cities. 

The network can be represented in the 6x6 matrix as found in table 3. 6 below. 

Table 3.6: 6x6 Distance Matrix 1 

 

       A        B          C         D          E         F 

A       0        8         23        18          6 ∞ 

B        8        0         10 ∞         14         17 

C       23        10          0         15 ∞         17 

D       18 ∞         15          0         13         10 

E         6        14 ∞         13          0         10 

F ∞       17         17         10         10          0 

 

The algorithm is thus performed on the matrix in table 3.7 as follows: 

 The choice is made to start the tour from point B (home city) to visit each city exactly once before returning 

to point B (home city).  

 The length between point B and A (8) is stored as shown in table 3.3.6 and all connections from B are broken 

by setting all elements of the B row to zero. All elements in the A column are also set to zero. All elements 

in column B are set to zero (only shown and bolded in the table below to be a reminder that it is stored). 

 

Table 3.7: The Distance Algorithm 1 

                                          ↓ 

         A          B         C        D         E         F 

A         0          8         23        18          6 ∞ 

B         0          0         0 0        0         0 

C         0          0          0         15 ∞         17 

D         0 0         15          0         13         10 

  D 

A 

C 

  18 

15 

13 

10 

10 

14 
17 17 

F 

B 
8 

23 

10 

E 

6 
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E         0          0 ∞         13          0         10 

F 0          0         17         10         10          0 

   

Move on the row to another city E and store the distance AE (6) and set all elements of row E to zero as shown in 

table 3.8.        

Table 3.8: The Distance Algorithm 2 

         A          B         C        D         E         F 

A         0          8         23        18          6 ∞ 

B         0          0         0 0        0         0 

C         0          0          0         15 ∞         17 

D         0 0         15          0         13         10 

E         0          0 0        0          0         0 

F 0          0         17         10         10          0 

 

Move through column E to row D and store distance ED (13) and set all elements in row E to zero as shown in Table 

3.9.  

   Table 3.9: The Distance Algorithm 3 

 

         A          B         C        D         E         F 

A         0          8         23           0           6 ∞ 

B         0          0         0  0           0         0 

C         0          0          0          0           ∞         17 

D         0 0         15          0           13         10 

E         0          0 0         0           0         0 

F 0          0         17         0          10          0 

 

Now from element ED (13), move along row D to any non-zero element in that row. The only non- zero element is 

10 in column F as shown in Table 3.10. 

    Table 3.10: The Distance Algorithm 4 

         A          B         C        D         E         F 

A         0          8         23           0           6 ∞ 

B         0          0         0  0           0         0 

C         0          0         0          0           ∞         17 

D         0 0         0          0           13         10 

E         0          0         0         0           0         0 

F 0          0         0         0           0          0 

Similarly, we move in column F from element 10 to the only non- zero element in the column 17 in row C. This is 

illustrated in Table 3.11. 

 

Table 3.11. The Distance Algorithm 5 

         A          B         C        D         E         F 

A         0          8         23           0           6 ∞ 

B         0          0         0  0           0         0 

C         0          0         0          0           ∞         17 

D         0 0         0          0           13           10 

E         0          0         0         0           0         0 

F 0          0         0         0           0          0 

    Elements of column B (the starting point or the home city) which was set to zero are then replaced so the algorithm 

can return to the home city. Table 3.12 shows the update of Table 3.11 with elements of column B replaced. 

    Table 3.12: The Distance Algorithm 6 
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         A          B         C        D         E         F 

A         0          8         23           0           6 ∞ 

B         0          0         0  0           0         0 

C         0          10         0          0           ∞         17 

D         0          ∞         0          0           13           10 

E         0         14         0         0           0         0 

F 0          17         0         0         0          0 

 

The last move is then made along row C from 17 in column F. The move ends up on element 10 on row C. Now 

element 10 on row C is also found on column B (the starting point) and this marks the end of the tour. Table 3.13 

shows the complete tour (represented by the lines joining cities in the rows and columns with the distances between 

the cities shown as elements in the matrix). 

 

    Table 3.13: The Distance Algorithm 7 

         A          B         C        D         E         F 

A         0          8         23           0           6 0 

B         0          0         0  0           0         0 

C         0          10         0          0           0         17 

D         0 0         0          0           13           10 

E         0          0         0         0           0         0 

F 0          0         0         0           0          0 

 

 

The sum of the distances between the cities visited is the total tour length. Table 3.14 shows the order or configuration 

of the tour and distances traveled and total tour distances. 

 

Table 3.14: Examples of Solution 1 

           Configuration            Distances Total Tour 

Distance 

   1          B-A-E-D-F-C-B       8+6+13+10+17+10      64 

   2          B-A-C-D-E-F-B       8+23+15+13+10+17      86 

   3          B-A-D-C-F-E-B       8+18+15+17+10+14      82 

   4          B-A-F-E-D-C-B       8+17+10+13+15+23      86 

 

3.4.9 The Simulated Annealing Algorithm 

The algorithm implemented for the simulated annealing is as specified by the flow chart of Figure 3.5. The input of 

solution is generated by the distance algorithm. The code for the implementation is Appendix A. 

 

  3.4.9.1 Pseudo Code 

Given an optimization problem, we put it in the form 𝑓(𝑥) such that 𝑥 ∈ 𝑆, 𝑆 = 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

The basic SA algorithm is detailed below with the following parameter identification: 

 𝑥(1) = 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛. 

𝐷(𝑥) = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑘 = 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 

𝛿 = 𝑑(𝑥1) −  𝑑(𝑥0) (𝐸𝑛𝑒𝑟𝑔𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑠 𝑥1 𝑎𝑛𝑑 𝑥0) 

𝑇 = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚) 

𝑔(𝑇) = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

𝑒−(𝛿 𝑇)⁄ = 𝐶ℎ𝑜𝑖𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛). 
It provides the condition under which a non- improvement solution is not discarded. 

Step 1: 
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(i) Select an initial solution 𝑥(0) evaluated by the distance algorithm based on the objective function 

and assign 𝑥(𝑏) =  𝑥(0) 

(ii) Set  𝑘 = 0, select an initial temperature (control parameter)  

 𝑇𝑘 =  𝑇0 𝑓𝑜𝑟 𝑘 = 0 𝑎𝑠𝑠𝑖𝑔𝑛  𝑇𝑏 =  𝑇0. 

(iii) Select a temperature function  𝑔(𝑇𝑘) 

Step 2:  

         Choose a solution 𝑥(1) 𝑖𝑛 𝑁(𝑥(0) 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝛿 = 𝑑(𝑥(1)) −  𝑑(𝑥(0)) 

Step 3: 

        𝐼𝑓 𝛿 = 0 𝑜𝑟 [𝛿 > 0 𝑎𝑛𝑑 𝑒−(𝛿 𝑇𝑘)⁄ ≥  𝜃: 𝜃 ← 𝑈 = (0, 1)], 𝑎𝑐𝑐𝑒𝑝𝑡 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥(1). 

         𝐴𝑠𝑠𝑖𝑔𝑛 𝑥(0) ← 𝑥(1) 𝑎𝑛𝑑 𝑘𝑒𝑒𝑝 𝑡ℎ𝑒  𝑛𝑒𝑤 𝑥(0) 𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡  𝑥(0) =  𝑥(𝑏) 𝑠𝑒𝑡 𝑇𝑏 =  𝑇𝑘 . 
Step 4: 

         If some stopping criteria are satisfied, stop. 

Step 5: 

          Update the temperature 𝑇𝑘+1 = 𝑔(𝑇𝑘) ≤ 𝑇𝑘 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑘 = 𝑘 + 1. 

 

3.4.9.2 Application of SA to an example. 

The starting iteration 𝑘 = 0 

(i) The initial solution is randomly chosen from table 3.3.14 as 

𝑥(0) = 𝐸 − 𝐴 − 𝐷 − 𝐶 − 𝐵 − 𝐹 − 𝐸 𝑤𝑖𝑡ℎ 𝑎 𝑑(𝑥(0)) = 76. 𝐴𝑠𝑠𝑖𝑔𝑛 𝑇0 = 20 𝑎𝑛𝑑 𝑖𝑛  

               𝑇0 = 𝛼𝑇, 𝛼 = 0.5, stopping at  𝑇 <  0.1. 

(ii) Compute a new 𝑑(𝑥(1)) = 86 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛  

𝑥(1) = 𝐴 − 𝐵 − 𝐹 − 𝐸 − 𝐷 − 𝐶 − 𝐵 − 𝐴 

(iii) Compute 𝛿 = 𝑑(𝑥(1)) −  𝑑(𝑥(0)) = 86 − 76 = 10. 

(iv) Since 𝛿 = 10 > 0, we test whether or not to discard the non- improvement solution. 

(v) We compute 𝑚 = 𝑒−(𝛿 𝑇)⁄ = 𝑒−(10 20)⁄ = 0.6065  

(vi) We generate the random number 𝜃 = 0.1187 since 𝑚 < 𝜃 we retain the initial solution. 

(vii) Since the stopping criterion is not met, move to the next step. 

(viii) Update the temperature get 𝑇1 = 𝛼𝑇0 = 0.5 (20) = 10 𝑎𝑛𝑑 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑘 = 𝑘 + 1 = 0 + 1 = 1. 

 

The second iteration  𝐾 = 1 

(i) Maintain initial solution. 

(ii) Choose a new random solution 𝑑(𝑥(2)) = 64 with configuration 

 𝑥(2) = 𝐵 − 𝐴 − 𝐸 − 𝐷 − 𝐹 − 𝐶 − 𝐵 

(iii) Compute 𝛿 = 𝑑(𝑥(2)) − 𝑑(𝑥(0)) = 64 − 76 = −12 𝑠𝑖𝑛𝑐𝑒 𝛿 = −12 < 0,  𝑥(2) = 64 is an improved 

solution. 

(iv) Set  𝑥(0) ← 𝑥(2) = 𝐵 − 𝐴 − 𝐸 − 𝐷 − 𝐹 − 𝐶 − 𝐵 𝑎𝑙𝑠𝑜 𝑠𝑒𝑡. 

(v) Update temperature 𝑇2 = 𝛼𝑇1 = 0.5 (10) = 5 𝑎𝑛𝑑 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑘 = 𝑘 + 1 = 1 + 1 = 2 

 

We continue the iterations until the stopping condition is met. For this example the solution is met. 

New solution adapted is 𝑥(0) = 𝐵 − 𝐴 − 𝐸 − 𝐷 − 𝐹 − 𝐶 − 𝐵 

Choose a new random solution  𝑑(𝑥(3)) = 59 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑥(1) = 𝐸 − 𝐴 − 𝐵 − 𝐶 − 𝐷 − 𝐹 − 𝐸 with the 

following steps: 

Compute  𝛿 = 𝑑(𝑥(1)) − 𝑑(𝑥(0)) = 59 − 64 = −5 𝑠𝑖𝑛𝑐𝑒 𝛿 = −5 < 0,  𝑥(1) = 59 𝑖𝑠 𝑎𝑛 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 solution. 

This cannot be improved further till the stopping criterion is met. 
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4. RESULT & DISCUSSION 

In this chapter, we shall present data collection, data analysis and the results. 

 

4.1 Numerical Representation of Constituency Capitals 

Each of the twenty three constituency capitals in Central Region below has been assigned numbers for the purpose of 

this research work. This is illustrated in the table below. 

Table 4.1: Numbers assigned to constituency capitals in the Central Region. 

CONSTITUENCY 

CAPITAL 

NUMBER 

ASSIGNED 

Cape Coast(Old Hospital 

Hill) 

1 

Elmina 2 

Saltpond 3 

Abura Dunkwa 4 

Nsuaem Kyekyewere 5 

Essarkyir 6 

Ajumako 7 

Jukwa 8 

Apam 9 

Twifo Praso 10 

Asikuma 11 

Assin Foso 12 

Afransi 13 

Winneba 14 

Agona Swedru 15 

Awutu Breku 16 

Kasoa 17 

Agona Nsaba 18 

Dunkwa-On-Offin 19 

Diaso 20 

Potsin 21 

Assin Breku 22 

Cape Coast(Abura) 23 
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4.2 Distance Matrix for the 23 Constituency Capitals in Central Region in kilometres (km). 

The table below shows the distance matrix obtained from distances between the capitals of the twenty-three 

constituencies. For cities without direct link, the minimum distance along the edges is considered. The cells indicating 

zero shows that there is no distance. 

𝐶𝑖𝑗= The distance from city 𝑖 to city 𝑗 

𝐶𝑖𝑖 =   𝐶𝑗𝑗 = 0 =There is no distance. 
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Table 4.2: Distance Matrix for the 23 Constituency capitals in Central region in kilometers (km) 

𝐶𝑖𝑗 1 

 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1 0 15 25 29 45 53 55 55 70 70 75 77 84 85 97 10

5 

11

0 

11

3 

13

5 

20

0 

97 95 5.2 

2 15 0 40 44 60 68 70 70 85 85 90 92 99 100 11

2 

12

0 

12

5 

12

8 

15

0 

21

5 

11

2 

11

0 

17.

2 

3 25 40 0 19 59 28 30 80 45 95 50 56 85 60 67 80 85 88 16

0 

22

5 

72 78 30.

2 

4 29 44 19 0 16 47 49 73 64 88 69 48 78 79 91 99 10

4 

78 13

8 

20

3 

91 66 34.

2 

5 45 60 59 16 0 63 65 100 80 115 100 32 120 125 11

7 

11

5 

12

0 

12

3 

18

0 

24

5 

13

5 

50 50.

2 

6 53 68 28 47 63 0 58 108 17 123 106 140 57 32 44 52 57 60 18

8 

25

3 

44 13

8 

150 

7 55 70 30 49 65 58 0 110 75 125 20 97 29 54 42 74 79 58 19

0 

25

5 

66 15

5 

59.

2 

8 55 70 80 73 100 10

8 

110 0 125 15 125 32 139 140 14

5 

16

0 

16

5 

15

9 

80 14

5 

15

2 

42 49.

8 

9 70 85 45 64 80 17 75 125 0 140 51 102 40 15 27 35 40 43 20

5 

27

0 

27 12

5 

75.

2 

10 70 85 95 88 115 12

3 

125 15 140 0 145 28 154 155 16

7 

17

5 

18

0 

18

3 

65 13

0 

16

5 

43 75.

2 

11 75 90 50 69 100 10

6 
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4.3 Formulation of the TSP model 

The problem can be defined as follows: Let 𝐺 = (𝑉, 𝐸) be a complete undirected graph with vertices 𝑉, |𝑉| = 𝑛, where 

n is the number of cities, and edges 𝐸 with edge length 𝑑𝑖𝑗  for (𝑖, 𝑗). We focus on the symmetric TSP case in which 

𝐶𝑖𝑗 = 𝐶𝑗𝑖, for all (𝑖, 𝑗).  

 

We formulate this minimization problem as an integer programming, as shown in Equations (1) to (5) 

 

𝑃1: 𝑚𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝑣𝑖∈𝑣

                                                                                                          (1) 

 

Subject to 

∑ 𝑥𝑖𝑗 = 1                 
𝑗∈𝑣
𝑗≠𝑖

 𝑖 ∈ 𝑣                                                                             (2) 

 

∑ 𝑥𝑖𝑗 = 1                 
𝑖∈𝑣
𝑖≠𝑗

 𝑗 ∈ 𝑣                                                                             (3) 

 

                     ∑ ∑ 𝑥𝑖𝑗𝑗∈𝑠𝑖∈𝑠 ≤ |𝑠| − 1              ∀𝑠 ⊂ 𝑣, 𝑠 ≠ ∅  𝑥𝑖𝑗 = 0 𝑜𝑟 1       𝑖, 𝑗 ∈ 𝑣       (4) 

 

                           𝑥𝑖𝑗 = 0 𝑜𝑟 1       𝑖, 𝑗 ∈ 𝑣                                                                                       (5) 

 

The problem is an assignment problem with additional restrictions that guarantee the exclusion of sub tours in the 

optimal solution. Recall that a sub tour in 𝑉 is a cycle that does not include all vertices (or cities). Equation (1) is the 

objective function, which minimizes the total distance to be traveled. 

Constraints (2) and (3) define a regular assignment problem, where (2) ensures that each city is entered from only one 

other city, while (3) ensures that each city is only departed onto other city. Constraint (4) eliminates sub tours. 

Constraint (5) is a binary constraint, where 𝑥𝑖𝑗 = 1 if edge (𝑖, 𝑗) in the solution and 𝑥𝑖𝑗 = 0, otherwise. 

 

4.4 Analysis 

To satisfy the constraints (2) and (3) we choose the random 

Initial tour (𝑥0) = 22 − 2 − 5 − 6 − 17 − 8 − 7 − 22 − 10 − 9 − 11 − 20 − 12 − 21 − 13 − 15 − 14 − 23 −

18 − 4 − 3 − 1 − 19 − 22 

  

From objective function (1) the initial distance= 𝑑(𝑥0) = d(22,2) + d(2,5) + d(5,6) + d(6,17) + d(17,8) +

d(8,7) + d(7,22) + d(22,10) + d(10,9) + d(9,11) + d(11,20) + d(20,12) + d(12,21) + d(21,13) +

d(13,15) + d(15,14) + d(14,23) + d(23,18) + d(18,4) + d(4,3) + d(3,1) + d(1,19) + d(19,22) = 2031.2km 

The initial temperature is taken to be (𝑇𝑜) = 4069.00,     α = 0.99 

Temperature is updated by using the formula 𝑇𝑘+1 = 𝛼𝑇𝑘 where k is the number of iteration. 

Stop when 𝑇 ≤ 42.03 

Simulated annealing algorithm was used to obtain the final solution. Probook hp laptop computer (CORE i3) was used 

in finding the solution after 1339 iterations in 102.367856 seconds. The execution time varied with the number of 

iterations. 

 

4.5 Results 

After performing 1339 iterations, the optimal tour= 2 − 6 − 9 − 14 − 21 − 16 − 17 − 15 − 18 − 13 − 11 − 7 −

3 − 12 − 19 − 20 − 10 − 8 − 22 − 5 − 4 − 23 − 1 − 2 

Thus,  
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= d(2,6) + d(6,9) + d(9,14) + d(14,21) + d(21,16) + d(16,17) + d(17,15) + d(15,18) + d(18,13)

+ d(13,11) + d(11,7) + d(7,3) + d(3,12) + d(12,19) + d(19,20) + d(20,10) + d(10,8)

+ d(8,22) + d(22,5) + d(5,4) + d(4,23) + d(23,1) + d(1,2) = 786k 

 

\There was no change in the last ten iterations for the optimal tour 

The optimal tour is therefore as follows: 

Elmina→ Essarkyir→ Apam→ Winneba→ Potsin→ Awutu Breku→ Kasoa→ Agona Swedru→ Agona Nsaba→

 Afransi→ Asikuma→ Ajumako→ Saltpond→ Assin Foso→ Dunkwa-on-Offin→ Diaso→ Twifo Praso→ Jukwa→

 Assin Breku→ Nsuaem Kyekyewere→ Abura Dunkwa→ Abura(Cape Coast) → Old Hospital Hill(Cape 

Coast) →Elmina 

 

5. CONCLUSION 

Simulated annealing is a heuristic- based search algorithm, motivated by an analogy of physical annealing in solids. 

It is capable of solving combinatorial optimization problem. The method of simulated annealing has been used to find 

the global minima cost configuration for NP- complete problems with many local minima. The Simulated annealing 

algorithm can be a useful tool which is applied to hard combinatorial problems like the TSP. Using simulated annealing 

as a method in solving the symmetric TSP model has proved that it is possible to converge to the best solution. We 

conclude that the objective of finding the minimum tour from the symmetric TSP model by the use of simulated 

annealing algorithm was successfully achieved. The study shows clearly that, any presidential aspirant who visits the 

Central Region must visit the constituencies in the order below to minimize cost. The order is as follows: Elmina→ 

Essarkyir→ Apam→ Winneba→ Potsin→ Awutu Breku→ Kasoa→ Agona Swedru→ Agona Nsaba→ Afransi→

 Asikuma→ Ajumako→ Saltpond→ Assin Foso→ Dunkwa-on-Offin→ Diaso→ Twifo Praso→ Jukwa→ Assin Breku→ 

Nsuaem Kyekyewere→ Abura Dunkwa→ Abura(Cape Coast) → Old Hospital Hill(Cape Coast) →Elmina. 
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