
Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               11 

 

The Process Specification Language (PSL) for Project Management 

Applications 
Jinxing Cheng 

Department of Civil and Environmental engineering  

Stanford University 

Abstract  

PSL was proposed by the National Institute of Standards and Technology (NIST) to exchange manufacturing process 

information.  While most data exchange standards, such as STEP [49] and IAI’s IFC [46], deal primarily with product 

data, PSL is designed specifically for process information [67, 80]. In this chapter, we explore the applicability of 

PSL for the exchange of project management data [25].  Following the discussion of the language is an elaboration 

of how to exchange information among project management applications using PSL.  A distributed data integration 

framework is proposed and prototyped.  Two illustrative example projects are employed to demonstrate that 

information can be successfully exchanged through the prototype system. Conflicts appear in a variety of forms, arise 

due to different reasons, and occur frequently in many construction projects.  It takes a great deal of time for project 

personnel to resolve various conflicts.  This chapter proposes a formal mechanism to detect conflicts of project 

information arising from different sources.  The implemented prototype has been successfully tested on a few example 

projects.  In addition to consistency checking, the potential application of PSL in constraint scheduling is also 

explored.  Large, complex projects often involve many constraints.  It usually takes a significant amount of time for 

schedulers to ensure that a schedule meets all constraints. This chapter proposes a method to express constraints in 

PSL and to check whether a project schedule meets constraints.  An example is provided to demonstrate that PSL has 

the potential to ensure conformity of project schedules to scheduling constraints. 

Keywords: Process Specification Language (PSL), Project Management Applications 

 

1.0 INTRODUCTION 

 The Process Specification Language (PSL) has been designed to facilitate correct and complete exchange 

of process information among manufacturing systems [67, 81]*.  Included in these applications are scheduling, process 

modeling, process and production planning, simulation, project management, workflow, and business process 

reengineering.  This chapter discusses how to exchange information among distributed project management tools 

using PSL.  As will be discussed in Chapter 3, PSL is also adopted as the basic data exchange language for project 

management applications in the simulation access framework. The PSL Ontology is a set of first-order theories 

organized into PSL-Core and a partially ordered set of extensions.  All extensions within PSL are consistent extensions 

of PSL-Core, although not all extensions within PSL need be mutually consistent.  Also, the core theories need not be 

conservative extensions of other core theories.  A particular set of theories is grouped together to form the Outer Core; 

this is only a pragmatic distinction, since in practice, they are needed for axiomatizing all other concepts in the PSL 

ontology.   

 The relationships among the core theories are depicted in Figure 2.1.The purpose of PSL-Core is to 

axiomatize a set of intuitive semantic primitives that is adequate for describing the fundamental concepts of 

manufacturing processes.  Consequently, this characterization of basic processes makes few assumptions about their 

nature beyond what is needed for describing those processes, and the Core is therefore rather weak in terms of logical 

expressiveness.  Specifically, the Core ontology consists of four disjoint classes: activities, activity occurrences, 

timepoints, and objects.  Activities may have zero or more occurrences, activity occurrences begin and end at 

timepoints, and timepoints constitute a linearly ordered set with endpoints at infinity.  Objects are simply those 

elements that are not activities, occurrences, or timepoints. 

                                                           
*  PSL has been accepted as project ISO 18629 within the International Organisation of Standardisation, and as of 

October 2002, part of the work is under review as a Draft International Standard. The complete set of axioms for the 

PSL Ontology can be found at {http://www.mel.nist.gov/psl/psl-ontology/}. 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               12 

 
Figure Error! No text of specified style in document..1: Core Theories of the PSL Ontology (from [67, 81]) 

 

PSL-Core is not strong enough to provide definitions of the many auxiliary notions that become necessary to 

describe all intuitions about manufacturing processes and project activities.  To supplement the concepts of PSL-Core, 

the ontology includes a set of extended theories that introduce new terminology.  These Outer Core theories provide 

the logical expressiveness to axiomatize intuitions involving concepts that are not explicitly specified in PSL-Core.  

The basic Outer Core theories include Occurrence Trees, Discrete States, Subactivities, Atomic Activities, Complex 

Activities, and Activity Occurrences.  An Occurrence Tree is the set of all discrete sequences of activity occurrences.  

Discrete States denote states and their relationships to activities.   

Subactivities are defined to represent an ordering for aggregations of activities.  Atomic Activities are defined 

to capture concurrent aggregation of primitive activities.  Complex Activities characterize complex activities and the 

relationship between occurrences of an activity and occurrences of its subactivities.  Activity Occurrences ensure that 

complex activity occurrences correspond to branches of activity trees.  The remaining core theories in the PSL 

Ontology include: Subactivity Occurrence Ordering (axiomatizing different partial orderings over subactivity 

occurrence), Iterated Occurrence Ordering  (axioms necessary for defining iterated activities), Duration (augmenting 

PSL-Core with a metric over the timeline), and Resource Requirements (which specify the conditions that must be 

satisfied by any object that is a resource for an activity). 

Activity

Occurrences

Complex Activities

Atomic Activities

Subactivity Occurrence Trees

PSL-Core

Discrete State

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               13 

Table Error! No text of specified style in document..1: Definitional Extensions of PSL (from [67, 81]) 

Definitional Extensions Core Theories Example Concepts 

 Activity Extensions  Complex Activities  Deterministic/nondeterministic 

activities 

 Concurrent activities 

 Partially ordered activities 

 Temporal and State 

Extensions 

 Complex Activities  

 Discrete States 

 Preconditions 

 Effects 

 Conditional activities 

 Triggered activities 

 Activity Ordering and 

Duration Extensions 

 Subactivity Occurrence 

Ordering 

 Iterated Occurrence Ordering 

 Duration 

 Complex sequences and 

branching 

 Iterated activities 

 Duration-based constraints 

 Resource Role 

Extensions 

 Resource Requirements  Reusable, consumable, 

renewable, and deteriorating 

resources 

 

There is a further distinction between core theories and definitional extensions.  Core theories introduce 

primitive concepts, while all terminology introduced in a definitional extension has conservative definitions using the 

terminology of the core theories.  The definitional extensions are grouped into parts according to the core theories that 

are required for their definitions.  Table 2.1 gives an overview of these groups together with example concepts that 

are defined in the extensions.  The definitional extensions in a group contain definitions that are conservative with 

respect to the specified core theories; for example, all concepts in the Temporal and State Extensions have conservative 

definitions with respect to both the Complex Activities and Discrete States theories. 

 

2.0 LITERATURE REVIEW 

2.1 Using PSL to Exchange Information among Project Management Applications 

To exchange information using PSL, wrappers for individual applications need to be implemented, so that 

they are PSL compliant.  Section 2.2.1 first discusses semantic mapping between PSL and project management 

application concepts, an important step in wrapping applications.  Section 2.2.2 then elaborates on how to develop 

wrappers for different project management tools. 

 

2.2 Semantic Mapping between PSL and Project Management Application Concepts 

PSL was designed to exchange process information among manufacturing applications.  In a pilot 

implementation at NIST, PSL was successfully used to exchange manufacturing process information between the 

IDEF3-based ProCAP and the C++ based ILOG Scheduler [80].  Although PSL was initially created mainly for the 

manufacturing industry, the core theories can be extended to construction project management and scheduling 

applications. In our research, we first selected a typical project management tool, the Primavera Project Planner (P3), 

as the benchmark application to help define the core concepts for construction project management.  Primavera P3 is 

a software tool for organizing, planning, and managing activities, projects, and resources.  The following discussion 

focuses on the semantic mapping between Primavera P3 and PSL. To achieve interoperability using PSL, semantic 

mapping is needed for various reasons.  First, the same term may have different meanings in different applications 

and universes of discourse.  For example, the term successor in PSL means that there are no other activities occurring 

between the two activities; however, in P3 the term does not have such an implication and only indicates that one 

activity cannot start before the other.  Second, the same concept in different applications may be represented differently 

using different terms.  For instance, the terms Successor and Predecessor in P3 are used to describe the dependency 

relationships; however, other terms, such as after-start and after-start-delay, are used in PSL to describe the same 

concepts.  To exchange project scheduling information, we first need to map the concepts in different applications 

onto the formal PSL ontology.   

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               14 

A typical construction project consists of a set of activities and the dependency relationships among the 

activities.  Construction activities can generally be categorized into one of three types: production, procurement, and 

administrative activities.  Each activity has associated attributes, such as start date, duration, etc.  Dependency 

relationships describe the constraints defining the order in which the activities must occur to complete the project [44].  

There are four typical dependency relationships: Finish to Start, Finish to Finish, Start to Start, Start to Finish. Figure 

2.2 depicts the dependency relationships and their respective definitions.  For example, the “Finish to Start” 

relationship between activity A and activity B means that B starts only after A completes, and the “Finish to Finish” 

relationship indicates that A needs to complete before B does. Each activity in a project schedule can be mapped onto 

an activity occurrence in PSL, while the timepoint is used to specify the beginning and the end points of an activity 

occurrence.  PSL extensions provide terms to describe the dependency relationships among activities.  For example, 

the term before-start in PSL corresponds to the “Start to Start” relationship, while the lag in the “Start to Start” 

relationship corresponds to the PSL term before-start-delay.  The PSL expression (before-start occ1 occ2 a3) specifies 

that both occ1 and occ2 are subactivity occurrences of the activity a3, while the beginning timepoint of occ1 is earlier 

than the beginning timepoint of occ2.  In addition, the expression (before-start-delay occ1 occ2 a3 d) implies that 

occ2 begins at least d timepoints after occ1 begins.  Table 2.2 lists the terms that are used in Primavera P3 and PSL to 

describe activities and dependency relationships. 

In addition to activity and relationship information, resource allocation also plays an important role in project 

scheduling.  A project schedule is not completely specified unless the necessary resources are allocated.  Resources 

include people, material, and equipment required to finish the work.  Resources can be mapped onto the lexicon 

resource in PSL, which identifies the object required by an activity.  

 

 
Figure Error! No text of specified style in document..2: Dependency Relationships among Activities 

A B

(a) Finish to Start

A B

(b) Finish to Finish

A B

(c) Start to Start

A B

(d) Start to Finish

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               15 

Table Error! No text of specified style in document..2: Mapping of Activities and Dependency Relationships 

Concepts in    

Primavera P3 

PSL terms 

Activity Activity occurrence 

Predecessor, Successor  Activity occurrence, before-start, before-finish, after-start, after-finish 

Start to Start before-start 

Start to Finish before-finish 

Finish to Start after-start 

Finish to Finish after-finish 

Dependency Lag before-start-delay, before-finish-delay, after-start-delay,  after-finish-

delay 

 

Semantic mapping between PSL and project management applications is not always straightforward.  For 

example, the total float concept in Primavera P3 cannot be directly mapped to a corresponding PSL term.  In Primavera 

P3, total float indicates the maximum amount of time a task can be delayed without postponing the whole project.  To 

express the total float concept, we need a set of PSL expressions.  For example, assuming that in Primavera P3 there 

is a project (proj1) with the scheduled completion date on March 10, 2003, the activity A is scheduled to finish on 

October 7, 2002 with a total float of 3 days.  To express the total float concept in the above example, we need to use 

the following PSL expressions. 

(=> (beforeEQ (endof A) 10/10/2002) (beforeEQ (endof proj1) 03/10/2003) ) 

(=> (before 10/10/2002 (endof A))  (before 03/10/2003 (endof proj1) ) ) 

 

Here October 10, 2002 is the completion date of the activity A if it is delayed by exactly 3 days.  The first 

PSL expression implies that if A is delayed by no more than 3 days, the project will be completed on time with the 

end date of the project remains to be March 10, 2003.  The second PSL expression indicates that if the end date of 

activity A is beyond October 10, 2002, the project completion date will then be postponed beyond March 10, 2003.  

Generally speaking, PSL has more expressive power than many project management tools.  In particular, PSL has the 

capability to express uncertainty, conditioning, and universal and existential relations.  As an example, the following 

PSL expressions can be used to indicate that a construction activity may require different resources depending on the 

result of other activities.  

(activity-occurrence pourConcrete) 

(doc pourConcrete “Pouring Concrete”) 

(=> (beforeEQ (endof  formColumns) 11/20/2002)  (demand constructionWorker             pourConcrete 3) ) 

(=> (before 11/20/2002   (endof formColumns) )   (demand constructionWorker     pourConcrete 6) ) 

(after-start pourConcrete  formColumns  proj1) 

 

Here, the activity pourConcrete requires different resources depending on its predecessor formColumns.  If 

the activity formColumns is not completed before November 20, 2002, then the activity pourConcrete would require 

more construction workers.  This conditioning expression, however, cannot be represented or encoded using project 

management tools that primarily handle deterministic scheduling. Let’s look at a mapping example between Primavera 

P3 and PSL.  Figure 2.3 shows the major activities involved in the schedule of a typical residential building project.  

The project schedule is shown as a PERT (Primavera's Easy Relationship Tracing) chart from the Primavera Project 

Planner.  In the project, the activity “Frame House” needs to finish before either the activity “Frame Roof” or “Install 

HVAC” can start.  After the completion of these two activities, the activity “Install Drywall” can proceed.  Figure 2.4 

shows the ASCII outputs of the scheduling and resource information of the project plan from Primavera P3.  For 

example, as shown in Figure 2.4, the activity “Frame House” starts on August 5, 2002 and lasts 15 days, while the 

activity “Install Drywall” needs the resource “drywall” to proceed. 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               16 

The scheduling information in Primavera P3 can be described precisely using PSL.  Figure 2.5 shows portion 

of the PSL expressions for the example project.  Here, ResProject is the project identifier of the example residential 

building project.  The PSL expressions (after-start ID100 ID110 ResProject) and (after-start-delay ID100 ID110 

ResProject 0) specify that the activity ID110 (“Frame Roof”) needs to start after the completion of the activity ID100 

(“Frame House”) with no lag between the two activities.  The PSL expression (available drywall ID130) indicates 

that the resource drywall is available for the activity ID130 (“Install DryWall”), while the PSL expression (demand 

drywall ID130 2220) specifies that the activity ID130 requires 2200 square feet of drywall. 

 

 
Figure Error! No text of specified style in document..3: Example Dependency of a Scheduling Chart in Primavera 

P3 

 

   ACT          TITLE         ES       EF       TF    RD                                                                                     

---------- --------------- -------- --------  ----- ----  

ID100      Frame House      5AUG02   23AUG02    0   15     

ID130      Install Drywall  5SEP02   2OCT02     0   20     

…… 

  ACT        RES       RUT       QTC           QAC                                                                                                                                                 

---------- --------   ----    ------------- ------------  

  ID130      DRYWALL   sqft      2200.00       2200.00 

…… 

Figure Error! No text of specified style in document..4: Schedule and Resource Information from Primavera P3 

 

 (and  

    (activity-occurrence ID100) 

    (doc ID100 "Frame House") 

    (beginof ID100 08/05/2002) 

    (duration-of ID100 15) 

    (after-start ID100 ID110 ResProject) 

    (after-start-delay ID100 ID110 ResProject 0) 

    ...... 

) 

(and 

    (resource drywall) 

    (available drywall ID130) 

    (demand drywall ID130 2220) 

) 

......   

Figure Error! No text of specified style in document..5: PSL Expressions for the Example Chart in Primavera P3 

 

2.3 Wrapping Project Management Applications 

There are many commercial software tools as well as in-house computer programs that have been developed 

for project management.  These tools use different internal representations and usually do not communicate to each 

other.  To achieve interoperability, different approaches have been proposed over the past decades.  Among them are 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               17 

direct translation, neutral file-based integration, centralized database, and software interface.  The pros and cons of 

these approaches are summarized in Table 2.3. 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               18 

Table Error! No text of specified style in document..3: Pros and Cons of Different Data Integration Approaches 

Methods Pros Cons 

Direct 

Translation 
 Only one translator is needed 

to achieve integration if 

there are only two programs. 

 

 It requires the cooperation of two software 

developers to achieve interoperability. 

 As the number of applications increase, the 

translators needed increase dramatically. 

Neutral File 

Based 

Translation 

 Only one translator is needed 

for each application. 

 Software developers focus on 

the translator of their own 

tools. 

 It requires more work if there are only two 

tools involved. 

Centralized 

Database 
 This approach has the 

potential to ensure that all 

participants have the latest 

information. 

 It could be difficult to define a common 

schema. 

 It requires extra programming effort to 

interact with database. 

Software 

Interface 
 This approach has more 

flexibility in automating the 

translating process. 

 Programmers need to understand APIs of 

individual tools. 

 It may require significantly more 

programming effort. 

 It may not work when no API is provided. 

 

To achieve interoperability among computer tools using PSL, it is necessary to develop wrappers for each 

individual tool.  The specific implementation might be different depending on individual tools.  There are two major 

considerations in selecting an appropriate approach to wrapping a legacy application: 

The Input/Output methods the legacy application supports: Typical Input/Output (I/O) methods includes 

application programming interface (API), neutral files, proprietary files, databases, and interactive interfaces.  

Different legacy applications may support some or all of the methods.  The wrapping approach is thus limited to the 

I/O methods that the legacy tool supports.  For example, we cannot use the API approach to interact directly with a 

legacy tool if the tool does not provide programming interface. 

Developer’ requirement: When more than one Input/Output method is provided by a legacy tool, it is up to the 

software developers to choose a method based on their specific requirements.  For example, file-based approaches 

require less programming effort than the API-based approach; however, they also provide less flexibility in 

automation.  In this research, the goal is to automate the data integration process as much as possible; thus, the 

programming interface approach is employed whenever possible.  

To exchange project scheduling information among different project management applications, we need to 

develop wrappers for each application.  The PSL wrappers are used to retrieve and transfer information between the 

applications, to map between application concepts and PSL ontology, and to parse and generate PSL files.  Figure 2.6 

shows a variety of software applications that have been wrapped using PSL.  Currently, these applications include the 

Primavera Project Planner (P3), Microsoft Project, Vite SimVision, 4D Viewer, AutoCAD Architectural Desktop, the 

GeneralCost Estimator, and Microsoft Excel.  As depicted in Figure 2.6, wrappers for individual applications need 

different implementations.  The implementations of a few wrappers are listed as follows: 

For Vite SimVision, we use Java Database Connectivity (JDBC) to parse the relevant information stored in the 

Access database created by the tool, translate the information into PSL, and create a PSL file.  For the PSL to Vite 

SimVision translation, the information in the PSL file is parsed and rewritten into VNB  (Access database) file format.  

For Primavera P3, the Primavera Automation Engine (RA) is employed.  The RA is a set of object-oriented, OLE 

2.0-based API, which allows object-oriented programming access to the P3 scheduling engine and other applications.  

We use RA to communicate with P3, such as retrieving project scheduling information from P3 and transferring this 

information to P3.  

For Microsoft Project, VBA (Visual Basic for Application) as well as the Microsoft Project Object Model is 

employed.  The process here is very similar to the communication protocols for Primavera P3. 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               19 

For 4D Viewer (McKinney and Fischer 1998), the scheduling information from the PSL file is retrieved and 

converted into ASCII format required by the 4D Viewer. For Microsoft Excel, VBA is employed as the programming 

language.  In addition, the Microsoft Excel Object Model is utilized to retrieve and update project information. For 

AutoCAD Architectural Desktop (ADT), we use VBA as well as the AutoCAD ActiveX Object Model. The General 

Cost Estimator is a cost estimating tool running in Microsoft Excel. The wrapping process for the tool is similar to the 

process for Microsoft Excel, except that the data structures and functionalities provided by the estimator are also 

utilized. 

 

 
Figure Error! No text of specified style in document..6: PSL Wrappers 

 

As shown in Figure 2.7, the wrapping process is decomposed into three modules: I/O modules, mapping modules, 

and translation modules.  By decomposing a wrapper into three modules, we standardize the wrapping process and 

improve the reusability of previous modules.  

 A syntactic translation module include a PSL parser and generator, which are responsible for parsing and 

generating PSL files according to the PSL syntax, respectively.  This module can be reused by wrappers for 

other project management tools with no or minimal changes.  

 

 Semantic mapping depends not only on the PSL ontology but also on the concepts used in the individual 

applications.  For many applications in the same domain, the concepts are similar.  Thus, the semantic 

mapping module can also be reused by future PSL wrappers with appropriate changes in the terminology of 

application concepts.  

 

 Input/Output (I/O) modules are responsible for retrieving and updating information in project management 

tools. The implementation of an I/O module depends on the I/O methods supported by the tool and its internal 

data representations.  Thus, I/O modules cannot be reused if project management tools do not support the 

PSL Files

Convert to PSL format PSL parser

Map PSL ontology  to concepts in

individual software

Retrieve information from

applications

P3: Primavera Automation

Engine

MS Project, MS Excel, GC

Estimator: VBA + application

modules

Vite SimVision: JDBC

Map concepts into formal PSL

ontology

Feed information into applications

P3: Primavera Automation Engine

MS Project, MS Excel, GC

Estimator, AutoCAD: VBA +

application modules

Vite SimVision: JDBC

4D Viewer: Plain text

Primavera

P3

MS

Project

Vite

SimVision
4D Viewer

MS Excel
GeneralCost

Estimator
AutoCAD

ADT

Project

Management

Applications

Wrappers

Retriving and

Updating

Information

Ontology

Mapping

Syntactic

Translatiom

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               20 

same Input/Output methods.  However, these modules can also be partly reused among a number of project 

management tools.  For example, Microsoft Project, Microsoft Excel, AutoCAD ADT, and the GeneralCost 

Estimator all support VBA programming.  The only difference is their individual Object Modules.  Thus, a 

significant part of the I/O modules can also be reused among the wrappers for these applications. 

 

As noted, modularizing the wrappers encourages shareability and reusability of the codes for different application 

tools.  In summary, the syntactic translation modules have the greatest reusability, because they deal with PSL files in 

standard ontology.  On the other hand, the I/O modules have to interact with different project management tools; thus, 

they are less likely to be reusable. 

 

 
Figure Error! No text of specified style in document..7: The Decomposition of  PSL Wrappers 

 

A PSL parser, as part of the wrappers, has been developed to read the project scheduling information from 

PSL files.  One simplification we made in the PSL parser is that PSL sentences are expressed as relations rather than 

functions.  In PSL, each function has a unique value; for example, in the PSL expression (endof A), the activity A can 

only have one unique completion date.  In contrast, the value of a relation is either true or false; furthermore, relations 

can have disagreement on the last element.  For example, the relations (before t1 t2) and (before t1 t3) differ.  As a 

result, every function can be expressed as an equivalent relation with axioms that ensure the uniqueness of values, 

while not every relation can be expressed as a function.  Therefore, using relations is usually more convenient than 

using functions and minimizes unnecessary confusions and complexities in implementing the PSL parser.  

It should be noted that only the information that is common to the applications can be exchanged.  As shown 

in Figure 2.8, the Primavera Project Planner (P3) includes scheduling, resource, and cost information, while Vite 

SimVision provides scheduling, resource, communication, and organizational information.  Scheduling and resource 

information, which is common to both applications, can be exchanged through PSL.  However, not all scheduling and 

resource information is exchanged between these two applications, since the granularity of such information may be 

different.  For example, Primavera P3 includes more detailed scheduling information than Vite SimVision; in other 

words, not all scheduling information in Primavera P3 is needed by and transferred to Vite SimVision. 

Project Management Tools
 Different Internal Data Representations

 Different Input/Output Methods

PSL Files

(Standard

 PSL Ontology)

I/O Module

(Retrieving and Updating Information)

Mapping Module

(Senmantic Mapping)

Translation Module

(Syntactic

Translation)

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               21 

 
Figure Error! No text of specified style in document..8: Exchange Information between Primavera P3 and Vite 

SimVision through PSL 

 

 

2.4 Distributed Data Integration Infrastructure 

Various architectures have been proposed to achieve software integration, such as localized integration, 

client-server integration and distributed integration.  Localized integration involves integrating various software tools 

on one machine (e.g., a desktop PC).  In a client-server environment, software integration is often accomplished using 

a project repository, which is either a neutral file or a database, residing on a central server, to which all applications 

communicate to exchange information.  In a distributed environment, applications reside on different computers and 

are accessed over private or public, local or wide area network.  

In a construction project, it is not unusual that project management tools are geographically distributed.  The 

goal of a distributed integration infrastructure is to link application tools and to act collaboratively on a project.  We 

have prototyped a distributed integration infrastructure using PSL as the information interchange standard among 

different project management tools [26].  As shown in Figure 2.9, a communication server is used to serve as the 

backbone of the system.  The communication server is responsible for listening requests from the communication 

agents associated with different project management applications.  When the server receives a request, it broadcasts 

the request to different communication agents. For example, the server may ask a communication agent to invoke a 

scheduling service or ask the agent to transfer the scheduling result to another simulation tool. The communication 

agents then pick up the request and process it.  In addition, the Oracle database is used to store the project information, 

so that users can access and update project information through a Web browser. 

Scheduling

Resource

Cost

......

Scheduling

Resource

Communication

Organiztion

......

Primavera P3 PSL Vite SimVision

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               22 

 
Figure Error! No text of specified style in document..9: A Distributed Integration Infrastructure 

 

2.5 Translation between PSL and Database 

The Oracle database is used to store project information so that it is accessible by users through a Web 

browser.  To use the database for data exchange, a database schema needs to be defined.  Table 2.4 illustrates the 

database schema in the current implementation. The PROJECT table stores the overall information of projects.  The 

ACTIVITY, SCHEDULE, and DEPENDENCY tables are used to describe activities and their relationships in the 

projects.  The ACTOR table describes project participants, while the ASSIGNMENT table stores the assignment 

information of project activities.  All cost information is stored in the COST table.  

 

Table Error! No text of specified style in document..4: A Database Schema for the Project Repository 

Tables Attributes 

project projectid, description, companyname, workday, workhour, startdate, finishdate, costid 

activity projectid, activityid, description, costid, scheduleid 

actor projectid,  actorid,   description,  role,  hourwage 

cost projectid, costid, actualcost, budgetedcost 

schedule projectid,  scheduleid,  startdate,  finishdate,  actualstart,  actualfinish,  earlystart,  

earlyfinish,  latestart,  latefinish,  duration,  actualduration,  freefloat,  totalfloat 

dependency projectid,  dependencyid,  activityid1,  activityid2, relationship, 

  driving,  lag 

assignment projectid,  assignmentid,  activityid,  actorid 

  

Once the schema is defined, a Java program is developed and employed to translate the information between 

PSL and database.  Figure 2.10 illustrates the translation process. JDBC is used to establish connection to the database, 

Primavera

P3

Microsoft

Project

Oracle 8i

Relational

Database

Microsoft

Excel

Vite

SimVision

Communication

Server

4D viewer

PSL Wrapper

Communication Agent

PSL Wrapper

Communication Agent

......

......

AutoCAD

ADT

GeneralCost

Estimator

 Project

Management

Tools

Distributed

at Different

Locations

Web

Browser

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               23 

and SQL statements are used to query project information in the database.  The information is then written into PSL 

according to the syntax.  In the reverse process, we can reuse the PSL parser that has already been developed to parse 

project information.  SQL operations are constructed based on the information.  The program finally connects to the 

database and writes the information into the database. 

 

 
Figure Error! No text of specified style in document..10: Translation between Database and PSL 

 

2.6 Network Communication in the Distributed Integration Framework 

The network communication mechanism in the distributed integration framework is illustrated in Figure 2.11.  

Java socket communication is used as the protocol between the communication server and agents.  A communication 

agent consists of an event listener, an event dispatcher, and a data mapper.  The messages in the system include control 

messages and data messages.  Control messages, such as invocation and termination requests, are typically small in 

size.  Data messages, such as the project scheduling information and organization information, however, are usually 

bigger in size.  The event listener receives control messages, while the event dispatcher sends out control messages.  

 

2.7 The data mapper is responsible for sending and receiving data messages.   

Figure 2.12 shows a Java code segment of an event listener.  The listener first defines two data streams: one 

input stream and one output stream.  It then creates a Socket on a specific port.  Finally, it keeps listening on the port 

to see if there are messages from the server. 

 
Figure Error! No text of specified style in document..11: A Network Communication Framework 

 

Public class ClientListener{ 

  protected DataInputStream i;  protected DataOutputStream o; 

  public static void main (String args[]) throws IOException { 

    Socket s = new Socket (args[0], Integer.parseInt (args[1])); 

    ClientListener client = new ClientListener(" " + args[0] + ":"  + args[1], s.getInputStream (), 

s.getOutputStream ()); 

    client.waitForEvent(); 

    s.close(); } 

  public void waitForEvent () { 

Oracle 8i

Relational

Database

PSL Parser
Construct SQL

Sentences

Wrtie to

Database

Write Results to

PSL

Use SQL to

Query Databse

Connect to

Databse

PSL

Files

Data Flow

Control Flow

Communication Server

Event

Listener

Data

Mapper

Event

Dispatcher

Event

Listener

Event

Dispatcher

Data

Mapper

Communication Agent

Java Socket

Communication

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               24 

    try { String line = i.readUTF ();} 

    ……} 

  ...... 

} 

Figure Error! No text of specified style in document..12: The Code Segment of an Event Listener 

 

3.0 DEMONSTRATIONS OF DISTRIBUTED DATA INTEGRATION 

In this section, two examples are used to demonstrate the integration of distributed project management tools. 

We have conducted a number of demonstrations between Glasgow Caledonian University in Scotland and Stanford 

University [27]*. In the demonstrations, the Oracle database server, the 4D Viewer, and the Vite SimVison are located 

at Stanford University, while the scheduling services (e.g., Microsoft Project and the Primavera Project Planner) reside 

at Glasgow Caledonian University. 

 

Example 1: A Chip Design Scenario 

We select a sample project from the tutorial of Vite SimVision software to test PSL for the exchange of 

project scheduling information.  A Vite SimVision project is composed of a traditional CPM diagram and additional 

links showing failure dependence, reciprocal information, and management structure.  The example scenario, as shown 

in Figure 2.13, is to design and fabricate a chip set for a new personal digital assistant (PDA) product.  There are 12 

activities in this project. Among the 12 activities there are three milestone activities: (1) Start Project, (2) Ship Tapes 

to Foundry, and (3) Fab, Test and Deliver. The activity “Design_Coordination” maintains the overall control of the 

project. 

Using PSL, we successfully exchange scheduling information among Vite SimVision, the Primavera Project 

Planner (P3), and Microsoft Project.  Figure 2.14 shows some selected logic sentences from the PSL file particular to 

this project.  These logic sentences specify the properties of the project and activities in the project.  For example, the 

expression (beginof TUTO 9/18/1998) specifies that the TUTO project starts on 9/18/1998.  The expression (after-

start ID190 ID200 TUTO) specifies that the task ID190 should finish before the task ID200 starts. 

 

 
Figure Error! No text of specified style in document..13: Original CPM Diagram in Vite SimVision 

                                                           
*   The demonstrations were conducted in collaboration with Professor Bimal Kumar of Glasgow Caledonian 

University, UK. 

Start

Project

Fab, Test

and Deliver

Develop

Specification

Write-Verify-

Synth_B1RTL
FullChipSynth

Sim_Gates

Eng Layout &

Physical Ver'n

Assemble &

verify_RTL

PartitionChip

& Floor

Planning

Generate Test

VectorsShip Tapes

to Foundry

Design_Coordination

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               25 

(and  

    (project TUTO) 

    (doc TUTO "TUTORIAL Project") 

    (beginof TUTO 9/18/1998) 

    (subactivity-occurrence ID100 TUTO) 

…… 

) 

(and  

    (activity-occurrence ID190) 

    (doc ID190 "PartitionChip & Floor Planning") 

    (beginof ID190 10/19/1998) 

    (duration-of ID190 42) 

    (after-start ID190 ID200 TUTO) 

    (after-start-delay ID190 ID200 TUTO 0)       

…… 

) 

Figure Error! No text of specified style in document..14: Sample PSL File 

 

Figures 2.15 to 2.17 illustrate the generated schedule in Vite SimVision, P3, and Microsoft Project.  Figure 

2.15 is the original Gantt chart of the sample project in Vite SimVision.  Figures 2.16 and 2.17 show the regenerated 

project schedule in P3 and Microsoft Project, respectively.  As shown in the figures, project scheduling information 

is successfully exchanged among these three applications.  Activities have the same start date and duration in all three 

applications.  The critical paths are also the same in all three applications.  

 

 
Figure Error! No text of specified style in document..15: Original Gantt Chart in Vite SimVision 

 

 
Figure Error! No text of specified style in document..16: Regenerated Schedule in Primavera P3 using PSL 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               26 

 
Figure Error! No text of specified style in document..17: Regenerated Schedule in Microsoft Project using PSL 

 

In this example scenario, the scheduling information from Vite SimVison is retrieved and converted into a 

PSL file.  The information in the PSL file is then parsed and used to regenerate the project schedule in the Primavera 

Project Planner and Microsoft Project.  The successful information exchange among these applications shows the 

potential of PSL as an interchange standard in construction project management.  

 

Example 2: Mortenson Ceiling Project 

We demonstrate the scalability and applicability of PSL as an interchange standard through the Mortenson 

Ceiling Project, which is part of the Walt Disney Concert Hall, built by Mortenson Construction and designed by 

Frank O. Gehry & Associates*.  There are 191 activities and 459 dependency relationships in this example project.  

PSL is employed as the data standard to exchange project scheduling information among Primavera P3, Microsoft 

Project, and 4D Viewer.  The PSL file of this project contains more than 2000 logic sentences. 

Figures 2.18 to 2.20 show selected results of this example demonstration.  Figure 2.18 is the original Gantt 

chart of the ceiling project in the Primavera Project Planner (P3).  Figure 2.19 shows a snapshot of the construction 

progress in 4D Viewer on March 25, 2001.  The scheduling information originally in P3 is successfully transferred to 

Microsoft Project using PSL, as shown in Figure 2.20. 

To further illustrate the information exchange process, we altered the duration of activity 18T1-33201 from 

1 day to 40 days in Microsoft Project, as shown in Figure 2.21.  The regenerated information is exchanged and 

displayed using P3 in Figure 2.22 and 4D Viewer in Figure 2.23.  The successful information exchange on this project 

demonstrates the scalability, applicability, and robustness of PSL as an interchange standard. 

 

 
Figure Error! No text of specified style in document..18: Original Schedule in Primavera P3 

                                                           
*   The building model and the 4D viewer were provided by Professor Martin Fischer and his research group at Stanford 

University. 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               27 

 
Figure Error! No text of specified style in document..19: Model in 4D Viewer Taken on March 25, 2001 

 

 
Figure Error! No text of specified style in document..20: Regenerated Gantt Chart in Microsoft Project using PSL 

 

 
Figure Error! No text of specified style in document..21: Updated Project Schedule in Microsoft Project 

 

 
Figure Error! No text of specified style in document..22: Updated Project Schedule in Primavera P3 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               28 

 
Figure Error! No text of specified style in document..23: Updated Model in 4D Viewer Taken on March 25, 2001 

 

4.0 PSL FOR CONSISTENCY CHECKING 

4.1 Conflicts in Project Management 

Conflicts are ubiquitous in everyday life.  The Oxford English Dictionary defines conflict as “the clashing or 

variance of opposed principles, statements, arguments, etc.”  Brown [17] defines conflict as “a form of interaction 

among parties that differ in interests, perceptions, and preferences.” Conflicts are commonplace on large construction 

projects, since each project by itself has its unique character and thus is a new venture.  No two building products are 

exactly the same.  To name a few, design specifications, site conditions, management teams, and financial situations 

vary from project to project.  Experiences gained from past projects cannot be fully transferred to new ones.  The 

information at hand is often conflicting, inconsistent, and incomplete. Project personnel spend a great deal of time 

handling various conflicts.  It has been estimated that as much as 80% of their time is spent dealing with conflicts 

[84].  Conflicts arise due to many factors and can occur from time to time during the course of a construction project.  

The interaction of different intellects, beliefs, cultures, personalities, and educational backgrounds may all generate 

conflicts.  Design changes, unexpected weather conditions, labor actions, and procurement delays are common bases 

for conflicts during various project stages.  One method to classify conflicts is by the source of conflicts, as follows 

[85]: 

 Conflict of interests, the discrepancy among involved parties on preferred outcomes. 

 Conflict of values, the discrepancy in beliefs or ideologies. 

 Conflict of opinions, the discrepancy in the best way to accomplish a shared goal. 

 Conflict of information, the discrepancy in project information (e.g., scheduling, resources, physical 

conditions). 

This research focuses on conflicts of information in project management.  In a distributed engineering 

environment, such conflicts occur more often due to incremental changes and miscommunications.  For example, a 

subcontractor may change its sub-schedule without realizing the potential impact on other project participants.  Thus, 

conflicts occur among the schedules of different participants. 

 

4.2 Review of Existing Approaches in Conflict Resolution 

There are two major approaches to solving information inconsistency problems in project management.  One 

method is to employ a centralized database, where all project information is stored.  The other one is to use various 

heuristic approaches for specific domain problems. A centralized database enables all project participants to be in tune 

with the latest information; thus, version conflicts can be eliminated with this approach.  However, this approach does 

not address any logic conflicts.  For example, a centralized database can ensure that all participants have the latest 

information, but it cannot ensure that there are no internal conflicts in the information itself. Heuristic approaches are 

employed to solve many specific conflicts in project management.  For example, Akinci et al. [2] developed a 

taxonomy to categorize and detect time-space conflicts.  The drawback is that it is difficult to generalize such heuristic 

solutions to handle conflicts that are outside of the defined domain problem. 

 

4.3 Consistency Checking using PSL 

PSL can be used to check the consistency of project information from different sources.  In particular, PSL 

can be used to detect logic conflicts in the project base, where information comes from heterogeneous applications.  

For example, as illustrated later, our initial investigation shows that it is possible to detect version conflicts and cyclic 

dependency relationships between the Primavera Project Planner and Microsoft Project.  With the conflicts found, it 

will be relatively easy to trace back to the sources of the conflicts.  In addition, project personnel can check 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               29 

assumptions using PSL.  For instance, suppose one would like to find out whether an activity can start on a specific 

date, say on November 15, 2001 without causing conflicts with other activities or prolonging the project.  With PSL, 

we can add one piece of knowledge, which in PSL format would be (beginof activity 2001-11-15), into the PSL 

knowledge base, and reason on the whole knowledge base.  If no conflict is found during the reasoning, project 

personnel can infer that the assumption is reasonable; in other words, in this example, the activity can start on 

November 15, 2001. 

Figure 2.24 depicts the basic process for detecting the conflicts or inconsistency of project information in the 

prototype implementation.  PSL wrappers are employed to retrieve project information from different applications.  

In this work, we employ a theorem-prover---Otter (Organized Techniques for Theorem-proving and Effective 

Research)---as the logic reasoning tool [65, 102].  Otter infers conclusions from given hypotheses and takes two types 

of input: logic clauses and first-order logic sentences.  Internally, Otter converts all inputs into logic clauses and 

applies inference rules to all possible logic clauses to infer new facts or conclusions. 

 

 
Figure Error! No text of specified style in document..24: Consistency Checking using PSL 

To utilize Otter, a translator has been developed to convert PSL files and PSL axioms into first-order logic 

sentences that Otter can understand.  Both PSL and Otter inputs are based on first-order logic, and they have only 

minor differences in syntax.  For example, in PSL a predicate and its variables are all within a pair of parentheses, 

while in Otter a predicate is followed by a pair of parentheses containing its variables.  Figure 2.25 shows the 

translation from PSL files to Otter inputs. 

 

 

(activity-occurrence 00H0-8011D) 

(beginof 00H0-8011D 2001-01-31) 

(duration-of 00H0-8011D 90) 

activity_occurrence(00H0_8011D). 

beginof(00H0_8011D, 11384). 

duration_of(00H0_8011D, 90). 

Primavera

P3

Microsoft

Project
Vite

PSL Files

Otter Input

PSL Axioms

4D Viewer

Reasoning Results

......

......PSL

Wrapper

PSL

Wrapper

PSL

Wrapper

PSL

Wrapper

PSL to Otter

Translator

Otter

(First Order Logic

Reasoning Tool)

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               30 

(freefloat 00H0-8011D 0) 

(totalfloat 00H0-8011D 29) 

(after-start 00H0-8011D 00H0-8011S CEIL) 

(after-start-delay 00H0-8011D 00H0-8011S CEIL 0.0) 

 

PSL Expressions 

freefloat(00H0_8011D, 0). 

totalfloat(00H0_8011D, 29). 

after_start(00H0_8011D, 00H0_8011S, CEIL). 

after_start_delay(00H0_8011D, 00H0_8011S, 

CEIL, 0). 

 

Otter Input 

Figure Error! No text of specified style in document..25: Converting PSL Expressions into Otter Input 

 

 
Figure Error! No text of specified style in document..26: Simplified Reasoning Process in Otter 

 

The reasoning process using Otter is summarized in Figure 2.26.  Otter first infers new conclusions from the 

existing knowledge base.  Otter then rewrites the new knowledge and checks whether it is subsumed by the existing 

knowledge.  If not, the new knowledge will be added to the existing knowledge base; otherwise, it will be deleted.  

Usually, the reasoning process will stop either when Otter finds conflicts or when no further conclusions can be 

inferred. The knowledge base includes two main parts: (1) axioms and definitions from PSL Core, PSL outer core, 

and PSL Extensions; and (2) facts of individual projects from heterogeneous sources.  The reasoning among the 

axioms and definitions can significantly slow the reasoning process without producing essential results.  We therefore 

partition the inputs into two lists: the axioms on the usable list and the project-specific facts on the SOS (set of support) 

list.  The performance of Otter can be significantly improved by separating the project specific knowledge and the 

PSL axioms/definitions.  For example, in the chip design project to be presented in the demonstration section, Otter 

takes only seven seconds to complete the reasoning, as compared to several hours without partitioning. 

 

4.4 Demonstration of the Consistency Checking Prototype 

This section presents an example to demonstrate how PSL can be used for consistency checking.  A chip 

design scenario is used to test the potential of PSL for consistency checking purpose.  The example project includes 

the design and fabrication of a chip set for a new personal digital assistant (PDA) product.  It involves managing 

design tasks as well as the foundry’s layout, testing, and manufacturing tasks.  Here we assume that there are two 

groups working on the project: one primarily responsible for the foundry’s layout, and the other primarily 

responsible for testing and manufacturing tasks.  We assume that the two groups employ different application 

software and work on the schedule independently but collaboratively.  In addition, we assume that group 1 uses 

Primavera P3 to create the detailed schedule.  Moreover, in this group’s schedule the “Eng Layout & Physical 

Ver’n” task is assumed to start after the “General Test Vector” task.  Figure 2.27 shows the group 1’s schedule in 

Primavera P3, and Figure 2.28 shows the group’s CPM diagram.  For group 2, Microsoft Project is employed as the 

project management tool.  Furthermore, the task “PartitionChip & Floor Planning” is split into two tasks: task 

“PartitionChip” and task “Floor Planning.”  In addition, in the schedule, group 2 assumes that the task “Sim_Gates” 

should follow the task “Eng Layout & Physical Ver’n.”  Figure 2.29 shows group 2’s schedule in Microsoft Project, 

and Figure 2.30 shows the CPM diagram. 

Project knowledge base

 PSL Core, PSL Outer Core, and PSL Extensions

 Project Specific Knowledge

Knowledge

to be added

Knowledge

to be deleted

Infer new

knowledge

Rewrite

Knowledge

Update

knowledge

base

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               31 

 
Figure Error! No text of specified style in document..27:  Group 1’s Schedule in Primavera P3 

 

 
Figure Error! No text of specified style in document..28: Group 1’s CPM Diagram 

 

 
Figure Error! No text of specified style in document..29: Group 2’s Schedule in Microsoft Project 

 

 
Figure Error! No text of specified style in document..30: Group 2’s CPM Diagram 

 

To check for inconsistencies in the two schedules, we first use PSL wrappers to retrieve project information 

from Primavera P3 and Microsoft Project.  We then store the information in PSL files, convert the PSL files into Otter 

format, and link the project information with Otter.  Finally, Otter is employed to reason about the project knowledge 

base and to detect conflicts.  Figure 2.31 shows the results obtained from the reasoning.  In the last sentence, the “$F” 

indicates that a conflict has been found; the sentence numbers 333 and 47 can be used to traced the sources of conflicts.  

In particular, the sentence after_start(ID110,ID180,TUTO) specifies that ID110 (“Sim_Gates”) should finish before 

ID180 (“Generate Test Vectors”) starts.  Similarly, after_start(ID180,ID160,TUTO) indicates that ID180 completes 

before ID160 (“Eng Layout & Physical Ver’n”) starts, while after_start(ID160,ID110,TUTO) indicates that ID160 

completes before ID110 starts.  The conflict detected is graphically depicted in Figure 2.32.  A cyclic dependency 

Start

Project

Fab, Test

and Deliver

Develop

Specification

Write-Verify-

Synth_B1RTL
FullChipSynth

Sim_Gates

Eng Layout &

Physical Ver'n

Assemble &

verify_RTL

PartitionChip

& Floor

Planning

Generate Test

Vectors

Ship Tapes

to Foundry

Design_Coordination

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               32 

relationship in the project schedule is detected because the task  “Sim_Gates” needs to start after the task “Eng Layout 

& Physical Ver’n” is completed, while at the same time the activity “Eng Layout & Physical Ver’n” needs to start 

after the activity “Sim_Gates” finishes. 

  

44 [] -after_start(x100,x101,x102)| -

after_start(x101,x103,x102)|after_start(x100,x103,x102). 

47 [] -after_start(x111,x112,x113)| -after_start(x112,x111,x113). 

85 [] after_start(ID110,ID180,TUTO). 

136 [] after_start(ID180,ID160,TUTO). 

252 [] after_start(ID160,ID110,TUTO). 

310 [hyper,136,44,85] after_start(ID110,ID160,TUTO). 

333 [hyper,310,44,252] after_start(ID160,ID160,TUTO). 

361 [hyper,333,47,333] $F. 

Figure Error! No text of specified style in document..31: Reasoning Results in Cyclic Dependency Relationships 

 

 
Figure Error! No text of specified style in document..32: Cycle in Dependency Relationships 

 

In addition to logic conflicts in the activity relationships, other conflicts (e.g., conflicts arising due to 

versioning problems) can also be detected.  For example, the same activity may have different start dates or durations 

in Primavera P3 and Microsoft Project.  To find these conflicts, we can simply add the following axioms into the 

knowledge base. 

(forall  ?a ?t1 ?t2 (=> (beginof ?a ?t1) (beginof ?a ?t2) (= ?t1 ?t2)) 

(forall  ?a ?d1 ?d2 (=> (duration-of ?a ?d1) (duration-of ?a ?d2) (= ?d1 ?d2)) 

 

The first axiom specifies that the start date of an activity is unique.  In other words, if an activity has two start 

dates, these two start dates must be equal.  Similarly, the second axiom specifies that the duration of an activity is 

unique.  These axioms will guarantee that an activity has a unique start date or duration.  With these axioms added 

into the project knowledge base, Otter can detect those activities that have different start dates or durations in 

Primavera P3 and Microsoft Project.   

Figure 2.33 shows the sample conflict of the start dates of the activity ID210 (“Fab, Test and Deliver”) 

detected by the reasoning tool.  The first logic sentence in Figure 2.33 indicates that an activity must have a unique 

start date.  Since Otter cannot directly operate on dates, we assume 01/01/1970 as the base date and use the Java class 

Calendar to convert the dates into numeric values.  The second logic sentence beginof(ID210,10738)  specifies that 

the activity ID210 starts at 10738 that is equivalent to 04/27/1999, as shown in Figure 2.27, which displays the project 

schedule using Primavera P3.  Similarly, in the logic sentence beginof(ID210,10773), the numeric value 10773 

corresponds to the date 06/01/1999, which is the start date of the activity ID210 from the schedule shown in Figure 

2.29 using Microsoft Project.  The last logic sentence in Figure 2.33 concludes that the activity ID210 has different 

start dates in the schedules from Primavera P3 and Microsoft Project, thus causing inconsistency. The above examples 

show that PSL can be used to detect inconsistencies in the project knowledge base.  Following the proof process, we 

can trace the root of the conflicts, identify the causes, and help resolve the inconsistency problems in the project. 

 

 

59 [] -beginof(x162,x163)| -beginof(x162,x164)|x163==x164. 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               33 

161 [] beginof(ID210,10738). 

273 [] beginof(ID210,10773). 

323 [hyper,273,59,161,demod,propositional] $F. 

Figure Error! No text of specified style in document..33: Reasoning Results in Version Conflicts 

 

 

5.0 SOUNDNESS AND COMPLETENESS 

The soundness and completeness of the consistency checking prototype largely depends on the soundness and 

completeness of the employed logic reasoning tool.  In this research, it depends on the soundness and completeness 

of Otter. 

Soundness: The consistency checking prototype is sound if a conflict detected by the prototype is indeed a 

conflict; in other words, the reasoning process is valid.  Otter has a very good record on soundness, but no part of it 

(approximately 28,000 lines of C code) has been formally verified [65].  Thus, any conflicts detected by the prototype 

may need to be checked manually or by another independent program. 

Completeness: The consistency checking prototype is complete if it detects all conflicts in the knowledge base. 

Theoretically, the proof system of Otter is not complete [65].  In Otter, many strategies have been adopted to save 

time and memory.  These strategies might be incomplete in theory; however, careful use of these strategies does not 

prevent Otter from finding proofs in practice [65]. To test the soundness and completeness of the consistency checking 

prototype, four example projects were employed, and various conflicts were created manually.  The prototype was 

then tested on these examples to see if the system is sound and complete.  In the demonstration, the following types 

of conflicts were manually created and mixed into individual example projects: 

 Inconsistent dates (e.g., start dates and finish dates) 

 Inconsistent task durations 

 Cyclic dependency relationships (A cycle may involve two, three, or more activities.) 

 Conflicts of resource competition among activities (e.g., two activities compete for one crane at the same 

time.)  

Table 2.5 shows the test results of the prototype system on soundness and completeness.  In all test cases, the system 

successfully detected all the conflicts and did not infer any false conflicts.  These experiments illustrate that the 

theorem prover can be employed reliably for conflict detection and consistency checking applications.  

Table Error! No text of specified style in document..5: Soundness and Completeness of the Consistency Checking 

Prototype 

 

Test Soundness Completeness 

Project 1 (1 conflict) 

  

Project 2 (3 conflicts) 

  

Project 3 (8 conflicts) 

  

Project 4 (12 conflicts) 

  

  

 

5.1 Performance Analysis of Consistency Checking 

Performance is a major issue for many logic reasoning systems.  As the knowledge base increases, the 

required reasoning time usually increases dramatically, which frequently makes a logic reasoning system not useful 

for practical situations.  We examine the performance issue by testing the consistency checking prototype on four 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               34 

example projects with different sizes.  The smallest project consists of 12 activities and 101 pieces of project specific 

facts, while the largest project has 460 activities and 5147 pieces of project specific facts*.  The experiments were 

conducted on two computers.  One is a Dell computer with 1 GB memory and a 2.4 GHZ Intel Pentium IV CPU, and 

the other is a Dell server with 4 GB memory and four 2.0 GHZ Intel Xeon CPUs. 

Section 2.5.3 has briefly discussed the importance of partitioning the input. Basically, the input includes two 

parts: (1) axioms and definitions from the PSL language specification; and (2) project specific facts.  These two parts 

can be put either into a single list as the input of the reasoning tool, or into two separate lists as the input.  By 

partitioning the input into two separate lists, the reasoning among the PSL axioms and definitions themselves has been 

eliminated, thus significantly reducing the reasoning time. To illustrate the importance of partitioning, the consistency 

checking prototype was also tested on the two smaller projects on the Dell server without partitioning the input. The 

reasoning times on these projects are shown in Table 2.6. In all test cases, a cyclic dependency relationship involving 

three activities was created for each project. We recorded the time required by the consistency checking system to 

find all potential conflicts in each project, not the time to find the first conflict. 

 

Table Error! No text of specified style in document..6:  Performance Results of the Consistency Checking 

Prototype 

Project Project Size Running Time 

Partitioning the knowledge base No-partitioning 

(on Dell Server) 

Dell PC Dell Server 

Project 1 12 Activities 

101 Pieces of Facts 

7 sec 

 

7 sec > 100 hours 

Project 2 58 Activities 

541 Pieces of Facts 

11min 23 sec > 100 hours 

Project 3 191 Activities 

2064 Pieces of Facts 

12 min 30 sec --- 

Project 4 460 Activities 

5147 Pieces of Facts 

14 min 1min 23 sec --- 

 

The following observations have been made from the test results on the consistency checking prototype: 

 It is difficult to predict the time required to detect conflicts in the knowledge base.  However, in general, 

running time increases non-linearly as the number of facts increases in the project. 

 Partitioning the input can dramatically reduce the reasoning time of the consistency checking prototype.  

Even for a simple project that can be completed in a few seconds with partitioning, the reasoning process 

fails to complete after more than 100 hours when the input is not partitioned. 

 By partitioning the input into two lists, the execution time can be quite reasonable.  As shown in Table 2.6, 

a fast computer with adequate memory can significantly reduce the time of consistency checking even for 

relatively large projects. 

 

These experiments illustrate the importance of partitioning the knowledge base when applying the theorem prover.  

Furthermore, the performance of the logic-based reasoning tool is acceptable for practical use in moderate size 

projects. 

 

 

                                                           
*   In the experiments with partitioning, only axioms and definitions related with project scheduling are selected from 

the PSL specification and loaded into the logic reasoning tool; thus, only around 120 pieces of knowledge from the 

PSL core or extensions are used with partitioning instead of thousands of facts. 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               35 

 

 

5.2 PSL for Constraint Scheduling 

Project scheduling is frequently subject to many constraints, such as the targeted completion dates, budget 

limits, and physical conditions.  To develop a good schedule, project personnel need to understand different constraints 

involved in scheduling.  A classification can help resolve the constraint problems and develop appropriate schedules. 

 

5.3 Scheduling Constraint Categorization and Expression 

Since the 1970s the Critical Path Method (CPM) has been widely used for project scheduling in the 

construction industry.  Shortly after the adoption of the CPM method, researchers started to realize the need to classify 

scheduling constraints.  For example, Antill and Woodhead [6] classified constraints according to origins, such as 

physical, hazard, safety, and equipment constraints.  Echeverry et al. [33] classified constraints according to physical 

component relationships, trade interaction, path interference, and code regulations. In this work, the constraints are 

grouped into three categories: single-task constraints, local constraints between two consecutive tasks, and global 

constraints that involve tasks.  This classification is based on the way such that constraints can be easily expressed in 

PSL. Single-task constraints are those involving only one task.  For example, the duration of a task should be limited 

to a number of days (e.g., 20 days).  Another typical single-task constraint is that a task may have exactly one 

responsible contractor (e.g., a general contractor or a sub-contractor).  In addition, schedulers often need to ensure that 

there are no isolated tasks in the schedule.  In other words, except for the start and finish tasks, each activity needs to 

be connected to at least one predecessor and one successor.  One essential step to expressing these constraints in PSL 

is the semantic mapping between the constraints and the corresponding PSL terms.  The following examples illustrate 

the mapping. 

 

 The duration of an activity should be limited to N days. 

(for all ?a ((<= (duration-of  a) N))) 

 

 Except the start activity, each activity should have a predecessor. 

(forall ?a (=> (<> a start) 

(exist ?a1 (or (before-start ?a1 ?a) 

(before-finish ?a1 ?a))) ) 

 

 Except the finish activity, each activity should have a successor. 

(forall ?a (=> (<> a finish) 

(exist ?a1 (or (after-start ?a ?a1) 

(after-finish ?a ?a1))) ) 

 

 Each task should have exactly one individual who is directly responsible for it. 

(forall ?a (exist ?c ( assign a c) )) 

(forall ?a (=> (assign a c1) (assign a c2) (= c1 c2))) 

 

Local constraints involve two neighboring tasks (e.g., constraints determining the dependency relationships), such as. 

 Physical component relationships (support, connect, cover, enclose, protect, etc.) 

 Trade interaction (serviced by, damaged by, workspace, resource, etc.) 

 Path interference  

 Code regulation (inspection, testing, safety, etc.) 

 

Here resource is used as an example to illustrate local constraints.  In the example, activity a1 and activity a2 require 

3 and 5 units of resources respectively.  There are only 6 units of resources available; thus, activities a1 and a2 cannot 

be performed in parallel (e.g., activity a2 may have to start after the completion of activity a1.).   The constraints can 

be expressed in PSL as follows: 

(resource r) 

(resource_point 6) 

(demand r a1 3) 

(demand r a2 5) 

(after-start a1 a2)  

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               36 

Global constraints refer to constraints involving multiple tasks (more than two) and even for the whole project, such 

as. 

 Project costs and durations 

 Space constraints of the construction site 

 Critical resource constraints (e.g., cranes) 

 External constraints (e.g., regulatory permissions, utility access, and unexpected site/weather conditions) 

 

Again, we use an example to illustrate how to express global constraints in PSL.  Suppose that on any given date a 

sub-contractor may not work on more than one task, this constraint can be expressed as follows: 

(forall ?sub  ?a1 ?a2  ?d 

    ( (activity ?a1) 

      (activity ?a2) 

      (actor ?sub) 

      (assigned ?a1 ?sub) 

      (assigned ?a2 ?sub) 

      (isbetween ?d (beginof ?a1) (endof ?a1)) 

      (isbetween ?d (beginof ?a2) (endof ?a2)) 

      (= ?a1 ?a2) ) ) 

 

5.4 PSL for Constraint Scheduling 

To ensure that a schedule meets multiple constraints can be difficult, especially for large, complex schedules 

with thousands of tasks and constraints.  For example, in the San Francisco De Young Museum project, there are over 

4,000 tasks and 40 subcontractors.  In this project, it took over nine months for the project engineer to develop a 

schedule that met the various constraints*. 

PSL can be used to check whether a schedule meets certain constraints due to its logic structure.  Obviously, 

a PSL wrapper needs to be developed to express scheduling information in PSL, as discussed earlier [25].  In addition, 

constraints need to be encoded in PSL.  A logic-reasoning tool can then be employed to detect potential conflicts 

between the schedule and the constraints.  The following example illustrates the use of PSL in checking whether a 

schedule meets constraints. 

 

 
Figure Error! No text of specified style in document..34: An Example Schedule 

 

(and (activity-occurrence ID100) 

     (doc ID120 "Start") 

     ......) 

(and (activity-occurrence ID120) 

     (doc ID120 "InstallHVAC") 

     (beginof ID120 08/05/2002) 

     (duration-of ID120 18) 

     (after-start ID120 ID160 proj) 

     (after-start-delay ID120 ID160 proj 0) 

     (demand tool ID120 80) 

(and (activity-occurrence ID140) 

     (doc ID140 "InstallElectrical") 

     (beginof ID140 08/05/2002) 

     (duration-of ID140 15) 

     (after-start ID140 ID160 proj) 

     (after-start-delay ID140 ID160 proj 0) 

     (demand tool ID130 40) 

      ......) 

(and (activity-occurrence ID180) 

     (doc ID120 "Finsih") 

                                                           
*  This information was obtained from the interview with Mr. Jeff Budke of Swinerton Builders, a project engineer in 

the San Francisco De Young Museum project. 

Start

InstallHVAC

InstallElectrical

Finish

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               37 

      ......) 

     ......) 

...... 

Figure Error! No text of specified style in document..35:  The Scheduling Information Expressed in PSL 

 

Let us assume that there are four tasks in a simplified schedule: one start task, one finish task, and two tasks 

in between, as shown in Figure 2.34.  Initially, task ID120 (“InstallHVAC”) and task ID140 (“InstallElectrical”) are 

scheduled to conduct in parallel, and they require 80 and 40 units of tools, respectively. 

The scheduling information can be expressed in PSL expressions, as shown in Figure 2.35.  The schedule itself is 

valid, and there are no internal conflicts.  However, if scheduling constraints exist, further analysis is then needed.  

For example, assume that there are only 100 units of tools available for use, which could be expressed in the following 

PSL expressions: 

(and (resource tool) 

(available tool 100) ) 

 

Potential conflicts may then arise due to resource limitation.  With the help of a logic reasoning engine, we 

can check whether the schedule satisfies the resource constraints.  In this example, the available resources are not 

adequate to conduct tasks ID120 and ID140 in parallel, and a conflict is detected.  Here P5 refers to an axiom about 

the PSL relation agg_demand; basically, the aggregate demand for the resource equals the sum of resources required 

by each activity.  P8 is an axiom dictating that the aggregate demand for resources should not exceed the available 

quantity.  The following shows the reasoning process: 

 

P1:  (demand tool ID120 80)   {Assertion} 

P2:  (demand tool ID140 40)   {Assertion} 

P3:      (<> ID120 ID140)   {Assertion} 

P4: (agg_demand ?r  N)   {Assertion} 

P5: (?r ?a1 ?a2 ?n1 ?n2 ?n  (demand ?r ?a1 ?n1) 

(demand ?r ?a2 ?n2) 

(<> ?a1 ?a2) 

(agg_demand ?r ?n) 

(= ?n  (+ ?n1 ?n2))    {Axiom} 

P6:  (= N 120))    {P1, P2, P3, P4, P5} 

P7:  (available tool 100)  {Assertion} 

P8: (?r ?n1 ?n2 ( (agg_demand ?r ?n1) 

(available ?r ?n2) 

(<= ?n1 ?n2) ))  {Axiom} 

P9: (<= N  100)   {P4, P7, P8} 

P10: (<= 120 100)   {P9, P6} 

P11:  False   {P10} 

 

Adjustments are needed if a schedule fails to meet all constraints.  In this example, we can either add more resources 

or conduct tasks ID120 and ID140 in a sequential order.  Each option will lead to a schedule satisfying the resource 

constraint.  It should be noted that while the reasoning system is able to check conformity, it does not automatically 

produce suggestions on alternatives.  Instead, project personnel have to develop alternatives and adjust the schedule 

when resource constraints are detected by the reasoning system. 

 

6.0 CONCLUSION  

Data integration has always been a challenge for the engineering and construction industry, where volumes 

of information are frequently generated by different software applications.  Although the Process Specification 

Language (PSL) was designed with the aim of exchanging process information among manufacturing applications, 

our research shows that PSL can also be applied to the engineering and construction industry.  The mapping between 

PSL and application concepts is first discussed, followed by the discussion of how to wrap different project 

management tools.   

While each application needs a separate wrapper, the modularity of the wrappers allows share-ability and 

reusability of the modules among different project management tools.  A distributed integration framework is proposed 

to integrate typical project management applications.  The framework has been successfully demonstrated with two 

example projects.  The distributed framework and the data exchange provide ubiquitous access to the project data 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               38 

from different tools in geographically dispersed locations. PSL is employed for information exchange among project 

management tools in the simulation access framework to be discussed in the next chapter. 

As an ontology standard based on first-order logic, PSL has applications beyond data exchange.  This chapter 

has illustrated the potential applications of PSL in two areas: consistency checking and constraint scheduling.  A 

formal mechanism is proposed to detect conflicts of project information arising from different sources.  An example 

demonstration is provided to illustrate the potential of PSL in consistency checking.  In addition, a method is presented 

to ensure conformity of project schedules to scheduling constraints using PSL. 

 

Reference 

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. "The Lorel Query Language for 

Semistructured Data," International Journal on Digital Libraries, 1(1):68-88, 1997. 

[2] B. Akinci, M. Fischer, R. Levitt, and R. Carlson. "Formalization and Automation of Time-Space Conflict 

Analysis," Journal of Computing in Civil Engineering, 16(2):124-134, 2002. 

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S. 

Thatte, I. Trickovic, and S. Weerawarana. BPEL4WS Specification: Business Process Execution Language for Web 

Services Version 1.1, http://www-106.ibm.com/developerworks/library/ws-bpel/, 2003. 

[4] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. "Natural Language Interfaces to Databases -- An 

Introduction," Journal of Natural Language Engineering, 1(1):29-81, 1995. 

[5] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, S. A. McIlraith, S. Narayanan, M. 

Paolucci, T. Payne, K. Sycara, and H. Zeng. "DAML-S: Semantic Markup for Web Services," Proceedings of the 

International Semantic Web Working Symposium, Stanford, CA, 2001. 

[6] J. Antill and R. Woodhead. Critical Path Methods in Construction Practice, 2nd Ed., John Wiley & Sons, 

Inc., New York, 1970. 

[7] N. Apte and T. Mehta. UDDI: Building Registry-based Web Services Solutions, Pearson Education, 2003. 

[8] A. Arkin. Business Process Modeling Language, Business Process Management Initiative, 2002. 

[9] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval, Addison Wesley Ltd, 1999. 

[10] A. D. Birrell and B. J. Nelson. "Implementing Remote Procedure Calls," ACM Transactions on Computer 

Systems, 2(1):39-59, 1984. 

[11] B. C. Bjork. "Basic Structure of a Proposed Building Product Model," CAD, 21(2):71-78, 1989. 

[12] A. Bosworth. "Developing Web Services," Proceedings of the International Conference on Data 

Engineering, Heidelberg, Germany, pp. 477-481, 2001. 

[13] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte, and D. Winer. 

Simple Object Access Protocol (SOAP), W3C Note, http://www.w3.org/TR/SOAP, 2000. 

[14] E. J. Breck, J. D. Burger, D. House, M. Light, and I. Mani. "Question answering from large document 

collections," Proceedings of AAAI Fall Symposium on Question Answering Systems, North Falmouth, MA, pp. 26-

31, 1999. 

[15] E. J. Breck, J. D. Burger, L. Ferro, L. Hirschman, D. House, M. Light, and I. Mani. "How to Evaluate Your 

Question Answering System Every Day and Still Get Real Work Done," Proceedings of LREC-2000, the 2nd 

International Conference on Language Resources and Evaluation, Athens, Greece, 2000. 

[16] P. Brothner. "Kawa: Compiling Scheme to Java," Proceedings of Lisp Users Conference, Berkeley, CA, 

1998. 

[17] L. D. Brown. Managing Conflict Among Groups, Prentice-Hall, Inc., 1995. 

[18] M. Burner. "The Deliberate Revolution Transforming Integration With XML Web Services?," ACM Queue, 

1(1):28-37, 2003. 

[19] J. Burstein, K. Kukich, S. Wolff, C. Lu, and M. Chodorow. "Computer Analysis of Essays," Proceedings of 

NCME Symposium on Automated Scoring, 1998. 

[20] C. Callison-Burch and P. Shilane. A Natural Language Question and Answer System, Stanford University, 

Stanford, CA, 2000. 

[21] S. Chandrasekaran, G. Silver, J. Miller, J. Cardoso, and A. Sheth. "Web Service Technologies and their 

Synergy with Simulation," Proceedings of the 2002 Winter Simulation Conference (WSC'02), San Diego, CA, pp. 

606- 615, 2002. 

[22] J. Cheng, B. Kumar, and K. H. Law. "A Question Answering System for Project Management 

Applications," Advanced Engineering Informatics, 16(4):277-289, 2002. 

[23] J. Cheng and K. H. Law. "Using Process Specification Language for Project Information Exchange," 

Proceedings of the 3rd International Conference on Concurrent Engineering in Construction, Berkeley, CA, pp. 63-

74, 2002. 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               39 

[24] J. Cheng, P. Trivedi, and K. H. Law. "Ontology Mapping Between PSL and XML-Based Standards For 

Project Scheduling," Proceedings of the 3rd International Conference on Concurrent Engineering in Construction, 

Berkeley, CA, pp. 143-156, 2002. 

[25] J. Cheng, M. Gruninger, R. D. Sriram, and K. H. Law. "Process Specification Language for Project 

Information Exchange," International Journal of Information Technology in Architecture, Engineering and 

Construction, 1(4):307-328, 2003. 

[26] J. Cheng, K. H. Law, and B. Kumar. "Integrating Project Management Applications as Web Services," 

Proceedings of the 2nd International Conference on Innovation in Architecture, Engineering and Construction, 

Loughborough University, UK, 2003. 

[27] J. Cheng, K. H. Law, and B. Kumar. "Online Collaboration of Project Management Applications," 

Proceedings of the 11th International Workshop of the EG-ICE, Weimar, Germany, 2004. 

[28] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. WSDL. Web Services Description Language, 

W3C Note, World Wide Web Consortium, http://www.w3.org/TR/wsdl, 2000. 

[29] A. Diekema, X. Liu, J. Chen, H. Wang, N. McCracken, O. Yilmazel, and E. D. Liddy. "Question 

Answering : CNLP at the TREC-9 Question Answering Track," Proceedings of Proceedings of the 9th Text 

REtrieval Conference (TREC-9), National Institute of Standards and Technology, Gaithersburg, MD, pp. 501-510, 

2000. 

[30] A. M. Dubois and F. Parand. "COMBINE Integrated Data Model," Proceedings of CIBSE National 

Conference, Manchester, UK, pp. 96-108, 1993. 

[31] C. L. Dym and R. E. Levitt. Knowledge-Based Systems In Engineering, McGraw-Hill, Inc., 1991. 

[32] C. M. Eastman. Building Product Models: Computer Environments Supporting Design and Construction, 

CRC Press, 1999. 

[33] D. Echeverry, W. Ibbs, and S. Kim. "Sequence Knowledge for Construction Scheduling," Journal of 

Construction Engineering and Management, 117(1):118-130, 1991. 

[34] B. Eisenberg, A. Grangard, and D. Nickull. ebXML Technical Architecture Specification v1.0.4, 

Organization for the Advancement of Structured Information Standards, http://www.ebxml.org/specs/ebTA.pdf, 

2001. 

[35] Fatdog. XQEngine Introductory Tutorial, Fatdog Software, http://www.fatdog.com/tutorial.html, 2002. 

[36] C. Fellbaum and G. Miller. WordNet: An Electronic Lexical Database (Language, Speech, and 

Communication), MIT Press, 1998. 

[37] J. Fowler. STEP for Data Management, Exchange and Sharing, Technology Appraisals Ltd., UK, 1995. 

[38] G. Frank. "A General Interface for Interaction of Special-Purpose Reasoners within a Modular Reasoning 

System," Proceedings of Question Answering Systems, Papers from the 1999 AAAI Fall Symposium, North 

Falmouth, Massachusetts, pp. 57-62, 1999. 

[39] T. Froese, M. Fischer, F. Grobler, J. Ritzenthaler, K. Yu, S. Sutherland, S. Staub, B. Akinci, R. Akbas, B. 

Koo, A. Barron, and J. Kunz. "Industry Foundation Classes for Project Management-A Trial Implementation," 

Electronic Journal of Information Technology in construction, 4:17-36, 1999. 

[40] GAO. Computer Aided Building Design, GAO, 1978. 

[41] F. K. Garas and I. Hunter. "CIMSteel (Computer Integrated Manufacturing in Constructional Steelwork) - 

Delivering the Promise," Structural Engineering, 76(3):43-45, 1998. 

[42] H. Garcia-Molina, J. D. Ullman, and J. D. Widon. Database Systems: The Complete Book, Prentice Hall, 

2001. 

[43] M. R. Genesereth and R. Fikes. Knowledge Interchange Format Reference Manual - Version 3, Report No. 

CSD-Logic-92-1, Department of Computer Science, Stanford University, Stanford, CA, 1992. 

[44] E. F. Gould. Managing the Construction Process: Estimating, Scheduling, and Project Control, Prentice 

Hall, 2002. 

[45] E. Hovy and C. Y. Lin. Automated Text Summarization in SUMMARIST, MIT Press, 1999. 

[46] IAI. Industry Foundation Classes, International Alliance for Interoperability, Washington, DC, 1997. 

[47] IAI. AecXML, International Alliance for Interoperability, http://www.aecxml.org, 2002. 

[48] IGES. Initial Graphics Exchange Standard (IGES), Version 5.1, National Bureau of Standards, 

Gaithersburg, MD, 1991. 

[49] ISO. Industrial Automation Systems-Product Data Representation and Exchange, International 

Organization for Standardization, 1989. 

[50] ISO. EXPRESS Language Reference Manual: External Representation of Product Definition Data, ISO 

DIS10303 Part 11, 1991. 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               40 

[51] P. Jacobs and L. Rau. "SCISOR: Extracting Information from On-line News," Communications of the 

ACM, 33(11):88-97, 1990. 

[52] V. Karamcheti and A. A. Chien. "A Comparison of Architectural Support for Messaging in the TMC CM-5 

and the Cray T3D," Proceedings of ISCA 95, Santa Margherita, Italy, pp. 298-307, 1995. 

[53] D. Klein and C. Manning. "Parsing with Treebank Grammars : Empirical Bounds, Theoretical Models, and 

the Structure of the Penn Treebank," Proceedings of the 39th Annual Meeting of the ACL, Toulouse, France, pp. 

330-337, 2001. 

[54] K. H. Law and M. K. Jouaneh. "Data Modeling for Building Design," Proceedings of the 4th Conference 

on Computing in Civil Engineering, ASCE, pp. 21-36, 1986. 

[55] K. H. Law, D. L. Spooner, and M. K. Jouaneh. "Abstraction Database Concepts for Engineering 

Modeling," Engineering with Computers, 2(2):79-84, 1987. 

[56] K. H. Law, T. Barsalou, and G. Wiederhold. "Management of Complex Structural Engineering Objects in a 

Relational Framework," Engineering with Computers, 6:81-92, 1990. 

[57] S. M. Lewandowski. "Framework for Component-Based Client/Server Computing," ACM Computing 

Surveys, 30(1):3-27, 1998. 

[58] F. Leymann. Web Services Flow Language (WSFL 1.0), IBM Corporation, 

http://www4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, 2001. 

[59] T. Liebich. XML Schema Language Binding of EXPRESS for ifcXML, International Alliance for 

Interoperability, 2001. 

[60] D. Liu, K. H. Law, and G. Wiederhold. "Data-flow Distribution in FICAS Service Composition 

Infrastructure," Proceedings of the 15th International Conference on Parallel and Distributed Computing Systems, 

Louisville, KY, 2002. 

[61] D. Liu, J. Peng, K. H. Law, G. Wiederhold, and R. D. Sriram. "Composition of Autonomous Services with 

Distributed Data Flows and Computations," submitted to ACM Transactions on Internet Technology, 

http://mediator.stanford.edu/papers/FICAS.pdf, 2003. 

[62] D. W. Liu. A Distributed Data Flow Model For Composing Software Services, Ph.D. Thesis, Department 

of Electrical Engineering, Stanford University, 2003. 

[63] M. P. Marcus, B. Santorini, and M. A. Marcinkiewica. "Building a large annotated corpus of English: the 

Penn Treebank," Computational Linguistics, 19(2):310-330, 1993. 

[64] R. Mayer and J. Linden. Using Iges, Dxf and Cals for Cad/Cam Data Transfer: The Complete Guide to 

Data Transfer Standards, Management Roundtable, 1992. 

[65] W. W. McCune. Otter 3.0 Reference Manual and Guide, Report No. ANL-94/6, Mathematics and 

Computer Science Division, Argonne National Laboratory, 1994. 

[66] K. McKinney and M. Fischer. "Generating, Evaluating and Visualizing Construction Schedules with CAD 

Tools," Automation in Construction, 7(6):433-447, 1998. 

[67] C. Menzel and M. Gruninger. "A Formal Foundation for Process Modeling," Proceedings of Formal 

Ontology in Information Systems, Ogunquit, Maine, pp. 256-269, 2001. 

[68] P. Naur and J. Backus. "Report on the Algorithmic Language ALGOL 60," Communications of the ACM, 

3(5):299-314, 1960. 

[69] NRC. The 1984 Workshop on Advanced Technology for Building Design and Engineering, Building 

Research Board, NRC, 1985. 

[70] NRC. The 1985 Workshop on Advanced Technology for Building Design and Engineering, Building 

Research Board, NRC, 1986. 

[71] NRC. The 1986 Workshop on Integrated Data Base Development for the Building Industry, Building 

Research Board, NRC, 1987. 

[72] S. K. Park, K. I. Lim, and E. D. Kim. "A STEP-based Integrated Structural Design System for Steel 

Framed Buildings," Proceedings of the 8th International ASCE Conference on Computing and Building 

Engineering, Stanford, CA, pp. 788-795, 2000. 

[73] F. Pereira. Logic for Natural Language Analysis, Technical Note 275, SRI International, 1983. 

[74] E. Pitt and K. McNiff. java.rmi: The Remote Method Invocation Guide, Addison Wesley, 2001. 

[75] A. Pope. The CORBA Reference Guide: Understanding the Common Object-Request Broker Architecture, 

Addison Wesley, 1998. 

[76] J. Robie. XQL Tutorial, Software AG, http://ibiblio.org/xql/xql-tutorial.html, 1999. 

[77] E. Roman, S. W. Ambler, and T. Jewell. Mastering Enterprise JavaBeans, 2nd Ed., John Wiley & Sons, 

2001. 

[78] J. Roy and A. Ramanujan. "Understanding Web Services," IT Professional, 3(6):69-73, 2001. 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/


Project Management Scientific Journal (https://damaacademia.com/pmsj/) 
Volume 1, Issue 5, pp.11-40, May 2019 

Published by: Dama Academic Scholarly & Scientific Research Society (www.damaacademia.com) 

ISSN: 2590-9681 (Online) | Impact Factor (SJIF): 4.309 | Journal DOI: 10.15373/22501991                               41 

[79] N. Sample, D. Beringer, L. Melloul, and G. Wiederhold. "CLAM: Composition Language for Autonomous 

Megamodules," Proceedings of the 3rd International Conference on Coordination Models and Languages, 

Amsterdam, Netherland, pp. 291-306, 1999. 

[80] C. Schlenoff, M. Ciocoiu, D. Libes, and M. Gruninger. "Process Specification Language: Results of the 

First Pilot Implementation," Proceedings of the International Mechanical Engineering Congress and Exposition, 

Nashville, Tennessee, pp. 529-539, 1999. 

[81] C. Schlenoff, M. Gruninger, and M. Ciocoiu. "The Essence of the Process Specification Language," 

Transactions of the Society for Computer Simulation, 16(4):204-216, 1999. 

[82] I. Schröder. Ingo's Collection Of POS Taggers, http://nats-www.informatik.uni-hamburg.de/~ingo/icopost/, 

2002. 

[83] J. Siméon. Galax Implementation of XQuery, XQuery Implementation Panel, XML 2001, Orlando, 

http://db.bell-labs.com/galax/, 2002. 

[84] A. Singh and D. A. Vlatas. "Using Conflict Management for Better Decision Making," Journal of 

Management in Engineering, 7(1):70-82, 1989. 

[85] A. Singh and H. M. Johnson. "Conflict Management Diagnosis at Project Management Organizations," 

Journal of Management in Engineering, 14(5):48-63, 1998. 

[86] Sourceforge. Sourceforge Xquench Project, Open Source Development Network, 

http://sourceforge.net/projects/xquench/, 2002. 

[87] STEP. ST-Developer, STEP Tools Inc., Rensselaer Technology Park, Troy, NY, 1997. 

[88] T. L. Thai. Learning DCOM, O'Reilly & Associates, 1999. 

[89] S. Thatte. XLANG: Web Services For Business Process Design, Microsoft Corporation, 2001. 

[90] D. Vanier. "Product Modeling: Helping Life Cycle Analysis of Roofing Systems," Proceedings of the Life 

Cycle of Construction IT Innovations, Stockhelm, Sweden, pp. 423-235, 1998. 

[91] M. Vasconcellos and M. Leon. "SPANAM and ENGSPAN: Machine translation at the Pan American 

Health Organisation," Computation Linguistics, 11(2-3):122-136, 1985. 

[92] Vite. SimVision Help, Vite SimVision Help Manual, Vite Corporation, 2002. 

[93] W3C. XML-QL: A Query Language for XML, World Wide Web Consortium, 

http://www.w3.org/TR/NOTE-xml-ql/, 1998. 

[94] W3C. XML Path Language (XPath) Version 1.0, World Wide Web Consortium, Recommendation 16, 

1999. 

[95] W3C. XQuery 1.0: An XML Query Language, W3C Working Draft 20, 2001. 

[96] Webcor. Ronal McDonal Housing Expansion Quarterly Project Review, Webcor Builders, April 2003. 

[97] WebGain. Java Compiler Compiler (JavaCC) - The Java Parser Generator, 

http://www.webgain.com/products/java_cc/, 2001. 

[98] G. Wiederhold. Strategic Uses of Information Technologies, Presentation at Stanford Graduate School of 

Business, Stanford, CA, 1996. 

[99] G. Wiederhold, R. Jiang, and H. Garcia-Molina. "An Interface Language for Projecting Alternatives in 

Decision-Making," Proceedings of AFCEA Database Colloquium, San Diego, CA, 1998. 

[100] G. Wiederhold and H. Garcia-Molina. "SimQL: an Interface for Integrating Access to Simulations into 

Information Systems," Proceedings of DARPA-JFACC Symposium, San Diego, pp. 259-262, 1999. 

[101] W. A. Woods. "Progress in Natural Language Understanding: An Application to Lunar Geology," 

Proceedings of AFIPS Conference, pp. 441-450, 1973. 

[102] L. Wos and G. W. Pieper. A Fascinating Country in the World of Computing: Your Guide to Automated 

Reasoning, World Scientific Publishing Company, Singapore, 2000. 

[103] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. "TSpaces," IBM Systems Journal, 37(3):454-

474, http://www.almaden.ibm.com/cs/TSpaces, 1998. 

[104] M. J. Young. Step by Step XML, Microsoft Press, 2001. 

[105] R. Zajac. "Towards Ontological Question Answering," Proceedings of ACL Open Domain Question 

Answering Workshop, Toulouse, 2001. 

 

 

https://damaacademia.com/pmsj/
http://www.damaacademia.com/

