
 
 
 
 

Dama International Journal of Researchers ISSN: 2343-6743, Scientific Journal Impact Factor: 5.968 & ISI Impact Factor: 1.018, 
Dama Academia Pubisher: Vol 3, Issue 06, June, 2018, Pages 22 - 35, Available @ www.damaacademia.com 

 

Dama International Journal of Researchers, www.damaacademia.com, editor@damaacademia.com 
22 

Comparing Historical Simulation and Monte Carlo Simulation in 

Calculating VaR 
 

Jones Osei1, Peter Kwasi Sarpong2, Samuel Amoako3 

      oseijones2013@gmail.com, kp.sarp@yahoo.co.uk, Samkamoako2016@gmail.com 

Mathematics Department, Kwame Nkrumah University of Sciene & Technology 

 

Abstract  

Since the publication of JP Morgan’s Risk Metrics in 1994 there has been an explosion in the research in the areas 

of value of risk and risk management in general. While the fundamental ideas encompassing VaR are founded in the 

area of market risk measurement they have been reached out throughout the most recent decade, to different territories 

of risk management. Specifically, VaR models are presently usually used to gauge both credit and operational risks. In 

any case, with different methods and models, the decision that VaR users face is the decision of selecting the proper 

procedure that is generally suitable. The strategies ought to make gauges that fit the normal conveyance of returns. 

On the off chance that VaR is overestimated, the administrators winds up overestimating the danger. This, in any case, 

could bring about the holding of great measures of cash to cover misfortunes as for the situation with banks under the 

Basel II accord, (Basle Committee on Banking Supervision, 1996). The same goes for the inverse occasion, when VaR has 

been thought little of   bringing about inability to cover acquired losses. This study seeks to compare two different 

methods to calculating VaR namely Historical Simulation and Monte Carlo Simulation. The method will be applied 

on six different equities on the Ghana Stock Exchange Market with two different confidence level of 95% and 99%. 

Keywords: VaR, Historical Simulation and Monte Carlo Simulation 

 

I. INTRODUCTION 

Researchers in the field of financial Mathematics and Economics have long identified the significance of measuring 

the risk of a portfolio of financial assets or securities. Vehemently, concerns go back at least forty years, when 

Markowitz’s earth shattering work on portfolio choice (1959) investigated the suitable definition and estimation of 

danger. In the field of investment, risk is a measure of how unstable assets returns are. Introduction to this instability 

can prompt a misfortune in one’s ventures. Thus instruments are utilized not just to latently measure and report risk, 

but to protectively control or effectively oversee it. Notwithstanding, a system progressed in writing includes the 

utilization of Value-at-Risk (VaR) models.  

 

The idea and utilization of value at risk is recent. Value at risk was first utilized by major financial firms in the late 

1980’s to quantify the dangers of their exchanging portfolios. Right now Value at risk was utilized by most major 

derivative dealers in remote nations to gauge and oversee market hazard. It is additionally progressively being utilized 

by smaller financial organizations, non-financial organizations, and institutional investors. A VaR model measures 

market risk by deciding how much the estimation of a portfolio could decrease over a given timeframe with a given 

likelihood as an aftereffect of changes in interest rates, foreign exchange rates, equity prices, or commodity prices.  

 

For instance, if the given timeframe is one day and the given likelihood is 1 percent, the VaR measure would be an 

evaluation of the decrease in the portfolio esteem that could happen with a 1% likelihood throughout the following 

exchanging day. At the end of the day, if the VaR measure is exact, losses greater than the VaR measure ought to 

happen under 1% of the time. VaR models total the several components of price risk into a single quantitative measure 

of the potential for losses over a specified time horizon. These models are obviously engaging in light of the fact that 

they pass available risk of the whole portfolio in one number. 

 

There are diverse procedures to compute the VaR, most popular are Historical simulation, Monte-Carlo simulation. 

Variance-Covariance, J. P. Morgan’s Risk Metrics System. For investors, danger is about the chances of losing cash, 

and VaR depends on that common- sense fact. By accepting that investors think about the chances of enormous 

misfortunes, VaR can be utilized to answer the inquiries. The VaR measurement has three parts: a period, a certainty 

level and a loss amount (or loss percentage). It can thus be used to answer question such as: “What is the most I can 

(with a 95% or 99% level of confidence) expect to lose in Cedis over the next month”?, ”What is the maximum 
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percentage I can (with 95% or 99% confidence) expect to lose over the next year”?, ”What is my worst-case scenario”? 

or ‘’How much could I lose in a really bad month”? 

II. VALUE AT RISK (VAR) 

An exact computation of risk is a crucial first step for real risk management, and financial mediators, because of the 

nature of their business, tend to be leading developers of new risk measurement techniques. In the past, many of these 

models were internal models, developed in-house by financial organizations. As a matter of fact, the VaR tool is 

complementary to many other internal risk measures. Nevertheless, market forces during the late 1990s established 

conditions that led to the development of VaR as a main risk measurement tool for financial firms. 

“how much can we lose on our trading portfolio by tomorrow’s close?” 

 

The above question was made by Dennis Weatherstone, who was at the time the Chairman of JP Morgan. There are 

two approaches in answering Weatherstone’s question. The first is a probabilistic/statistical approach which is the 

center of the VaR measure and the other is the scenario approach-an event-driven, non-quantitative, subjective 

approach, which computes the effect on the portfolio value of a scenario or a set of scenarios that indicate what is 

considered adverse circumstances. VaR takes a probabilistic or statistical approach to answering Mr. Weatherstone’s 

question of how much could be lost on a “worst day.” Hence, the definition of “worst day” in a statistical sense, such 

that there is only a y percent probability that daily losses will run over this amount given a distribution of all feasible 

daily returns over some current past period. Therefore, we define a “worst day” so that there is only a y percent 

probability of an even worse day. 

 
 

Figure 3.1: VaR and the normal distribution 

 

 

A. Definition of Value-at-Risk 

A value-at-risk model evaluates the market risk by determining how much the value of a portfolio could decrease over 

a given period of time with a given probability as a result of changes in market prices or rates. It allows managers and 

investors to say: “we are X percent certain that we will not lose more than V Cedis in the next N days” (Hull, 2002). 

The variable V is the Value at Risk. It is a function of two components and this components greatly affects the nature 

of the value-at-risk model. 

• N (The time Horizon) - It is a period of time over which VaR is measured. It is traditionally measured in 

trading days rather than calendar days.  Pragmatically, financial analysts mostly set N = 1, because of lack of 

data to estimate the behaviour of market variables over longer period of time. 

• Y (The Confidence level) - Frequently used confidence levels are 99% and 95%. For instance, a 500 Cedis, 

one day, 95% confidence level VaR value for a stock means that during the next day we are 95% certain that 
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the value of our asset in this specific stock will not decrease by more than 500 Cedis. The VaR will decrease 

if a lower confidence level say 99% or 95% is chosen. Different confidence levels will suit different 

organizations and purposes and will be chosen according to financial analyst’s relation to risk. The more risk 

averse the firm is the higher the confidence level will be selected. 

 

To provide an overview of the measure of VaR, a simple example is given. Assume that the unit share price of Tullow 

oil on the Ghana Stock Exchange market today is 20 Cedis and the daily standard deviation (σ) is 4 Cedis. Investors 

that purchase larger shares might want to know how much, given a certain confidence level, they can possibly lose 

when purchasing the share today compared to tomorrow. Suppose, the chosen confidence interval is 99%, this means 

that a day out of hundred, the loss will be greater than the calculated VaR. This is true when the share price is normally 

distributed around the mean price change. 

 

Value due to a decrease in the share price = 20 − 2.33 x σ = 10.68 Value due to an increase in the share price = 20 + 

2.33 x σ = 29: 32 

This can be explained as, with a 99% probability, the loss will not be greater than 20 −10.68 = 9.32 Ghana Cedis which 

is the VaR for a confidence level of 99%. 

 

B. Assumptions behind Value-at-Risk 

As often as possible, some measurable presumptions are made keeping in mind the end goal to compute the VaR. The 

stationarity prerequisite. That is, a 1% change in returns is similarly prone to happen anytime. Stationarity is a 

customary presumption in money related financial aspects, since it disentangles calculations significantly. A related 

presumption is the random walk assumption of inter-temporal unpredictability. That is, everyday varieties in returns 

are autonomous; say, a lessening in the Ghana Stock file on one day of y% has no prescient force concerning returns 

on the Ghana Stock record on the following day. Additionally, the random walk assumption can be depicted as the 

presumption of a normal rate of return equivalent to zero, as in the value portfolio sample. Henceforth, if the normal 

day by day return is zero, then the ideal speculation assessment of tomorrow’s value level is today’s level. A basic 

supposition is the non-negativity requirement, which obviously expresses that money related resources with limited 

obligation can’t accomplish negative qualities. All things considered, subsidiaries (examples: forwards, futures, and 

swaps) can repudiate this presumption. The time consistency necessity declares that all unit period suppositions hold 

over the multi-period time horizon. Another most noteworthy suspicion is the distributional assumption. In the basic 

equity portfolio illustration, it can be expected that every day return varieties in the Ghana Stock file take after a typical 

dissemination. The supposition has the upside of making the VaR estimations much less demanding. In any case it has 

a few downsides. The value changes don’t generally suit the typical appropriation bend and when more perceptions are 

found in the tails, ordinary based VaR will downplay the misfortunes that can happen. 

 

C. Steps in calculating Value-at-Risk 

There are three steps in VaR calculations. The first step is the holding period, the time period over which the losses 

may occur. This period is mostly a day, however it can be more or less conditional on a particular situation. Investors 

who actively trade their portfolios has the tendency to use a 1-day holding period, whereas longer holding periods are 

more pragmatic for nonfinancial firms and institutional investors. The longer the holding period, the larger the VaR. 

The next step is the probability of losses more than VaR, p, needs to be stated, with the most ordinary probability level 

being 1%. Literature provides little direction about the choice of p; it is mainly decided by how the user of the risk 

management system desires to explain the VaR number. VaR levels of 99% to 95% are ordinary in practice, however 

less extreme higher numbers are often used in risk control on the trading floor and most extreme lower numbers may 

be used for applications like survival analysis, economic capital, or long-run risk analysis. The last step is to determine 

the probability distribution of the profit and loss of the portfolio. This is the most problematic and significance aspect 

of risk modeling. The normal practice is to evaluate the distribution by using historical observations and a statistical 

model. Calculate the VaR estimate - this is accomplished by observing the loss amount related with that area under the 

normal curve at the critical confidence interval value that is statistically related with the probability chosen for the VaR 

estimate in step 2. 

 

D. Interpreting and Analyzing Value-at-Risk 
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In deciphering and looking at VaR numbers, it is basic to give careful consideration to the likelihood and holding period 

since, without them, VaR numbers are valueless. Case in point, a portfolio containing the same resource could deliver 

two divergent VaR estimates if risk managers choose different values of the probability of losses more than VaR and 

holding periods. Plainly, a loss permitted with a likelihood of just 3% rises above a loss permitted with a likelihood of 

7%. With regards to the VaR of an organization’s arrangement of positions is a related measure of the risk of budgetary 

anguish over a brief period depend on the liquidity of portfolio positions and the risk of amazing money outpourings. 

Antagonistic liquidity conditions lead to high exchange costs, for example, wide spreads and large margin calls. VaR 

is unrealistic to catch these effects. In danger enhancement, VaR is an imperative stride forward as for customary 

measures in view of susceptibilities to market variables. VaR is a complete thought and can be actualized to most 

money related instruments. It encapsulates in a single number all the risks of a portfolio fusing loan cost hazard, remote 

trade hazard. It additionally speeds up examinations between disparate resource classes. The VaR measure consolidates 

quantile (loss) and likelihood. 

 

E. Measuring Returns 

From the definition of VaR, the VaR number is the portfolio return in the worst case, hence the definition of portfolio 

return is first introduced. The return on Portfolio, ∆P is the  difference between portfolio values, that is, ∆P = Pt+1 − 

Pt, where the portfolio values at time t and t + 1 are Pt and Pt+1 respectively. The portfolio returns can be described 

by the rate of return. Nonetheless, there are two kinds of rates, namely the arithmetic and geometric. Geometric rate of 

r e y u u rn  gR
 is the logarithm of t h e price ratio, mathematically, 1

ln t
g

t

P
R

P



 whilst arithmetic rate of return 
R

,  is  portfolio    return divides the original value , mathematically 

1

1

t t

t

P P
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P
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By substitution, it can be noted that
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
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
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. Suppose the time horizon is short, the daily 

arithmetic rate of return is around zero, then by Taylor expansion,  

                                                        

2 3 4

...
2 3 4

g

R R R
R R   

    
 

Hence gR R  , implying that arithmetic rate and geometric rate are the same and we can use R to denote both. Let 

,t nR
 be the rate of return during the last n days, by geometric rate of returns: 

                               

1 1
, 1 1
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The rate of return during the last n days is the sum of n proceeding rates. The portfolio return of two consecutive days 

is ,2 1t t tR R R  
. 

 

F. Deriving Value-at-Risk 

The loss on a trading portfolio such that there is a probability p of losses equaling or exceeding VaR in a given trading 

period and a (1 - p) probability of losses being lower than the VaR. Mostly written as VaR (p) or VaR 100 %P  

making the reliance on probability clear for instance, VaR (0.01) or VaR 1% . Probability levels mostly used in 

calculating VaR is 99% and 99.5%, however, percentage values that are lower and higher than these are mostly used in 

its application. VaR is a quantile on the distribution of Profit and Loss (P = L). Let the random variable R denote the 

(P = L) on an investment portfolio, with a specific realization say r. If one unit of an asset is held, (P = L) can be written 

as: 

                                                                R = Pt − Pt−1                                                            (3.1) 
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Comprehensively, if the portfolio value is ψ and the returns is Y, then: 

 

R = ψY (3.2) 

 

Let the density of P/L be denoted by fr (.), then VaR is given by: 

 

                                                                       
 Pr ( )R VaR p p  

                                            (3.3) 

                                                                       

( )

inf
( )

VaR p

rp f y dy



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                                                (3.4) 

From equations (3.1) - (3.4), VaR can be derived from simple returns, 
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Assuming the return is zero and volatility is indicated by σ, then from the definition of VaR in (3.3) and (3.4), VaR can 

be obtained from: 

                                                                       1( ( ))r t tp P P P VaR p   
 

                                                                       1( ( ))r t tp P P R VaR p   
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Let the distribution of standardized returns  

tR

  be QR(.) and the distribution by Q−1(p).  

Hence the VaR for holding a unit of the asset is: 
1

1( ) ( )R tVaR p Q p P 
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The significance level can be denoted by 

1( ) ( )Ry p Q p
 the VaR equation can be written as: 

                                                                 1( ) ( ) tVaR p y p P  
 

However if continuously compounded returns are used: 
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This implies that, 
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Since 1
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1

t

VaR p

P
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 we can denote the distribution of standardized returns 

tY

  by Qy (.) 

the inverse distribution by 

1( ) ( )yy p Q p
, we have  

                                                                           

1

1( ) ( exp( ( ) ) 1)y tVaR p Q p P
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y and for small 

1( )yQ p 

, the VaR for holding one unit of the asset is given by: 

 

 

1( ) ( ) tVaR p y p P  
 

 

 

So, the VaR for continuously compounded returns is approximately the same as the VaR using simple returns. 

 

III. COHERENCE 

The properties a risk measure should have in order to be considered a functional risk mea- sure was studied by Artzner 

et al. (1999); they determined four axioms that risk measures ideally should comply with. If a risk measure satisfies 

these four axioms it is called coherent. Let τ denote a risk measure. In this work, our risk measure is the VaR. 

 

A. Definition  

Consider two real-valued random variables: A and B. A function τ (.): A, B → ℜ is called a coherent risk measure if it 

satisfies for A, B and constant k. V is the VaR. 

 

1. Subadditivity 

A, B, A + B ∈ V ⇒ τ (A + B) ≤ τ (A) + τ (B) 

 

The risk to the portfolios of A and B cannot be worse than the sum of the two individual risks-an illustration of the 

diversification principle. 

 

2. Translation Invariance 

A ∈ V, k ∈ ℜ ⇒ τ (A + k) = τ (A) − k 

 

Adding k to the portfolio is like adding cash, which acts as insurance, so the risk of 

 

A + k is less than the risk of A by the amount of cash, k. 

 

3. Positive Homogeneity 

A ∈ V, k > 0 ⇒ τ (kA) = kτ (A) for k > 0 

 

For instance, if the portfolio value doubles (k = 2) then the risk doubles. 

 

4. Monotonicity 

 

A, B ∈ V, A ≤ B ⇒ τ (A) ≥ τ (B) 

 

If portfolio A never transcends the values of portfolio B (that is, it is always more negative, consequently, its losses 

will be equal or larger), the risk of B should never surpass the risk of A. However the axiom of positive homogeneity 

is pragmatically violated. For instance, suppose the maximum risk a portfolio worth five hundred Ghana Cedis can 

hold is thirty Cedis. Then this implies from a axiom 3 that, whenever the portfolio is doubled, the risk should also be 

doubled. But this is always not the case because as relative shareholdings increase and/or the liquidity of a stock 

decreases, risk may increase more rapidly than the portfolio size. In such a situation positive homogeneity is violated 

and: τ (kA) > kτ (A) (3.5) 

 

Among these four axioms, the most important is the sub-additivity. A portfolio of assets is measured as less risky than 

the sum of the risks of distinct assets if this axiom holds. If VaR violate this axiom, it can erroneously be concluded 

that diversification results in an increase in risk. VaR is sub-additive in the special case of normally distributed returns. 

Dan´ielsson et al. (2010a) studied the sub-additivity of VaR in details and found out that VaR is actually sub-additive 
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conditioned that the tail index exceeds 2- when the second moment, or variance, is defined under a condition of 

multivariate regular variation. 

 

IV. HISTORICAL SIMULATION (HS) METHOD 

Historical simulation can also be used in estimating the Value at Risk. Historical Simulation is more pliable than the 

Parametric method and avoids some of the pitfalls of the parametric method. This method has the benefit of simply 

handling options in the portfolio (Best, 1998). It also has the benefit of extensively accepted by trading communities 

and management mostly because of its clarity. The historical simulation method calculates potential losses using real 

historical data of the returns in the risk factors and hence captures the non-normal distribution of risk factor returns. 

Because the risk factor returns used for revaluing the portfolio are real past movements, the correlation in the estimation 

are also actual historical correlations. As Dan´      ielsson (2011) clearly stated, the main concept of this methodology 

is to predict future losses based on the historical performance. Historical simulation (HS) is a simple method for 

forecasting risk and relies on the assumption that history repeats itself, where one of the observed historical returns is 

anticipated to be the next period return. Each historical observation carries the same weight in HS forecasting. This can 

be a disadvantage, specifically when there is a structural break in volatility. Nevertheless, in the absence of structural 

breaks, HS tends to function better than alternative methods. It is less sensitive to the odd outlier and does not absorb 

estimation error in the same way as parametric methods. The importance of HS become especially clear when working 

with portfolios because it directly captures nonlinear dependence in a way that other methods cannot. 

 

Values of the market components for a specific past period are fetched and changes in these values over the time 

horizon are observed for use in the calculation. For example, if a 1-day VaR is needed using the past 50 trading days, 

each of the market factors will have a vector of observed changes that will be made up of the 49 changes in value of 

the market factor. A vector of different values is generated for each of the market factors by adding the contemporary 

value of the market factor to each of the values in the vector of observed changes. 

 

The portfolio value is constructed using the present and alternative values for the market factors. The variations in 

portfolio value between the recent value and the alternative values are then evaluated. The last step is to categorize the 

changes in portfolio value from the smallest value to highest value and ascertain VaR based on the required confidence 

interval. For a 1-day, 95% confidence level VaR using the past 100 trading days, the VaR would be the 95th most 

unfavourable change in portfolio value. 

The risk is calculated with price changes: 

 

5. Absolute change in price, 

6. Logarithmic change in price, 

7. Relative change in price, but should the change be relative to the initial price, then  it is called return or rate 

of return. 

1-day Period 

 

The price in time t can be denoted as Pt (which represents one trading day). The relative rate of return (Rt), between t 

and t − 1 can be calculated as: 

 

 

                                                

1

1

t t
t

t

P P
R

P








 
The logarithmic rate of return (Rlt) correspond to 

                                                                                        1

( ) log log(1 )t
t t

t

P
Rl R

P

  

 
The absolute rate of return (Rat) for the same time period is 

 

                                                                             1t t tRa P P 
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K- days Period 

Return of the k-days period of time is defined as 

                                                                                   

1t t
t

t k

P P
R

P








 
The main assumptions of HS are: 

• Selected sample period could describe the properties of assets very well, 

• There is a probability of reiterating the past in the future, that is, the recreation of  

the patterns appeared in the volatilities and correlations of the returns in historical sample, in the future. However, the 

past could be a good basis of the future forecast. 

The process used to estimate the VaR of a given portfolio using historical simulation is as below: 

1. A portfolio of M assets denoted by a vector of weights is defined; 

                                  

0

0

0

0

,1

,2

,3

:

, M





 





 
 
 
 
 
 
 
                                                                                 (3.6) 

2. For each asset price or risk factor involved in the problem, obtain a series of returns for a given time period 

(for example, 200 days). When log-returns are used, they are 

calculated as below: 

                                       
,

,
log

, 1
k t

pk t
r

pk t



                                                                       (3.7) 

where ,k tr
 and 

,pk t
 are respectively the return and price of the asset k at time t. 

 

3. Consider each of the days in the time series of returns as a scenario for possible Changes in the next day. As 

there are M assets, each day t of historical data will form a scenario defined by: 

                                                           

1

2

3

,

,

,

:

,

t

r t

r t

r r t

M t



 
 
 
 
 
 
 
                                                                                        (3.8) 

It is important to notice that from this point on the scenarios tr  are no longer seen as time series, but just as a set of 

different possible realizations of the random vectors tr , obtained from historical data.   

4. Apply each of the scenarios to the composition of the portfolio today, that is, do not apply the price changes 

in cascade to the portfolio. Indicating that the outcome of the application of scenario t to the portfolio is: 
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1,

0 0

2,

0 0

3,

0 0

,
0 0

,1 ,1.

,2 ,2

,3 ,3

: :

, ,

r t

r t
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e

e

e

M Me

 

 

  

 



  
  
  
   
  
  

   
                                                              (3.9) 

Note that despite the fact that the notation wt,k  is used to represent weights in Pth portfolio, they will not be normalized 

in this procedure, in such a way that  
,1

N

t kk
w


for 0k   may be different than one. 

5. The log-returns of the portfolio for each of the scenarios are estimated as: 

 

                                                        
,1

log( )
N

t t kk
R w


 

                                                             (3.10)       

                    

            remembering that 
,1

1
N

t kk
w




 

6. Categorize the portfolio returns (Rt) for the various scenarios into percentiles. 

7. The VaR will be the return that correlate with the preferred confidence level. For instance, if there are 200 

days and a confidence level of 99% preferred, the VaR will be the second worst return of the portfolio. 

 

 

 

V. MONTE CARLO SIMULATION METHOD 

Monte Carlo simulation is more pliable. Unlike historical simulation, Monte Carlo simulation permits the risk manager 

to use real historical distributions for risk factor returns as opposed to having to assume normal returns. Monte Carlo 

simulation is an extensive method of stochastic modeling processes-processes entailing human selection for which we 

have insufficient information. It imitates such a procedure by way of random numbers obtained from probability 

distributions which are presumed to correctly describe the un- known constituents of the process being modeled. Monte 

Carlo simulation is largely used in physics and engineering as well as in finance.  

 

Stanislaw Ulam created the Monte Carlo approach in 1946 (Eckhardt, 1987) and includes some method of statistical 

sampling used to estimate solutions to quantitative problems. In the procedure, the arbitrary procedure under analysis 

is imitated time after time, where in each simulation will be generated a scenario of conceivable parameters of the 

portfolio at the target horizon. By creating a substantial number of plans, ultimately the distribution acquired through 

simulation will converge towards the true distribution. A good illustration of this method can be obtained, for example, 

in Holton (2003, chapter 5). 

 

Crouhy et al. (2001) stated that this approach is beneficial in that: it allows the performance of sensitivity analyses and 

stress testing; the method can be used to model any complex portfolio; and that any distribution of the risk factors may 

be used. He however stated that outliers are not incorporated into the distribution; it is very computer intensive. In 

addition to the strength of Monte Carlo simulation is that no assumptions about normality of returns have to be made. 

The method is also capable of covering nonlinear instruments, such as options, Damodaran (2007). To add more to the 

benefits of this approach of VaR, Jorion (2001) reminds that Monte Carlo simulation initiates the whole distribution 

and consequently it can be used, for example, to estimate losses in excess of VaR. A possible weakness is also model 

risk, which arises due to wrong assumptions about the pricing models and underlying stochastic processes, a possible 

weak. If these are not properly stated, VaR calculations will be misrepresented, Jorion (2001). Furthermore, Dowd 

(1998) points out that complex techniques related to this approach necessitate specific skills. Senior management may 

therefore have difficult time acquainting themselves of how VaR values are calculated when Monte Carlo is used. 

 

VI. COMPARISON OF METHODS 

http://www.damaacademia.com/
http://www.damaacademia.com/
http://www.damaacademia.com/


 
 
 
 

Dama International Journal of Researchers ISSN: 2343-6743, Scientific Journal Impact Factor: 5.968 & ISI Impact Factor: 1.018, 
Dama Academia Pubisher: Vol 3, Issue 06, June, 2018, Pages 22 - 35, Available @ www.damaacademia.com 

 

Dama International Journal of Researchers, www.damaacademia.com, editor@damaacademia.com 
31 

VaR methods vary in their propensity to capture risks of options, ease of execution, ease of interpretation to directors 

and managers, pliability in analyzing the effect of variations in the assumptions, and reliability of the results (Linsmeier 

and Pearson, 1996). As for the accuracy of the result, the best method seems to be the Monte Carlo method. The 

advantage exibility is particularly large. However, its use may be time consuming and it requires some knowledge and 

experience of the creators and users. Both Monte Carlo simulation and historical simulation methods rely on 

simulations and they suffer when using a lower number of scenarios by bad convergence to the actual sample quantile.  

While Monte Carlo method is generating larger number of scenarios, and the limits are given by the computational 

resources available, the historical simulation method exhibits a more serious problem a long time series are often not 

available and VaR cannot be estimated, especially at higher levels of probability. The optimal choice will be decided 

by which dimension the risk manager finds most significant and appropriate. If VaR is being calculated for a risk source 

that is stable and in the presence of real historical data, historical simulations provide good estimate. In the most 

comprehensive case of computing VaR for nonlinear portfolios over long time periods, where the historical data is 

volatile and non-stationary and the normality assumption is uncertain, Monte Carlo simulations do best 

(www.stern.nyu.edu/ adamodar/pdfiles/papers/VAR.pdf, 2010). 

 

VII. A GENERAL SOLUTION TO THE BASIC VAR PROBLEM 

Given that a portfolio consist of Assets 1, 2, 3, . . . , N .Di Cedis are invested in Asset i, the   

total value of the portfolio is then then  

                                     D1 + D2 + D3 +. . . +DN = 1

N

ii
D D




Cedis.   
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i 

 

Assumption is made that the one-day Asset i return is normally distributed with variance σ2 and expected value E(ri). 

The covariance between the 1-day returns of Assets i and j is denoted by σij. We want to determine the 1-day VaR at 

a confidence level of 5% 

To solve this problem above, calculate the variance and expected return of the total port- folio. To do this, the 

weighting for each asset is calculated. The proportion of the portfolio expected return located to Asset i is 

1 2 3 ...

i
i

N

D

D D D D
 

   
 

These are called asset weighting factors. Let 

1

2

3

...

N

K









 
 
 
 
 
 
 
   and 

1

2

3

...

M

E r

E r

U E r

E r

 
 
 
 
 
 
 
   

A linear combination of random variables are created, where the random variables are the expected 1-day returns for 

each asset, and the coefficients are the asset weighing factors. 

From the property of expectations, 

                                                                1 1

n n

i i i i

i i

E X E X 
 

 
  

and using the matrix method for finding this expectation: 1

N

portfolio i i

i

E r E r


 
= 
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... ...
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  
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   
     

                                                                                1

M

portfolio j i p

j

E r E r 

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Subsequently, the variance of the total portfolio is calculated. The variance of the linear combination of random 

variables is given by: 

                                                                  

2

1 1

( ) ( ) 2 ( , )
n n N

i i i i j i i j

i i i j

Var X Var X Cov r r   
 

   
p  

The above equation is modified to the conditions of our stated problem: 

 

                                                          

2 2

1 1

( ) ( ) 2 ( , )
N N N

P i i i j j i i j

i i i j

Var r alpha Var r Cov r r   
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    
p  

                                                                    

                                                                     

2 2 2

1

2
N N

p i j j i ij

i i j
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
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By computing 

2

p
, 
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From the definition that:  
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The VaR can now be calculated since the expected value and variance for the overall port- folio return has been 

evaluated. Assume that the portfolio return is normally distributed with mean µp and variance   

2

P  both of which has 

already been calculated for. Since a 5% confidence level is needed, the return is solved such that a return worse than 

this return occurs only 5% of the time. Mathematically, we are solving for r*. Assume r* is found. Normally r* is 

minute, non-positive decimal. 100r*% is a percentage and can be thought   of as the one-day percent loss such that, in 

normal market conditions, the portfolio loses more than 100 r*% only 5% of the time.  Therefore, the one-day Value-

at-Risk at a 5% confidence level is  

D |r ∗ |. 

 

 

 

 

 

                                             

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Line plot of returns of stock 1 
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In the rare occurrence that r∗ > 0, the VaR is not very beneficial. However, r* was evaluated such that the portfolio 

performs worse than r* only 5% of the time. But r∗ > 0, hence it can be stated that only 5% of the time will the 

portfolio earn us a positive return between 0 and r* or lose money. Therefore, if r∗ > 0 is obtained, it is an ineffective 

metric. 

A new VaR analysis should then be estimated with a lower confidence level until we obtain an r∗ < 0. 

 

Skewness: Skewness is a measure of the asymmetry of the data around the sample mean. If skewness is negative, the 

data are spread out more to the left of the mean than to the right. If skewness is positive, the data are spread out more 

to the right. The skewness of the normal distribution (or any perfectly symmetric distribution) is zero. This means 

normally distributed data is assumed to be symmetrically distributed around its mean. The skewness of  a distribution 

is defined as 

                                                    

3

3

( )E x
s








                                                                      (3.11)  

Where µ is the mean of x, σ is the standard deviation of x, and E(t) represents the expected value of the quantity t. 

Skewness computes a sample version of this historical value. Therefore a dataset with either a positive or negative 

skew deviates from the normal distribution assumptions. This can cause parametric approaches of VaR to be less 

effective if assets returns are heavily skewed, since these approaches assume that the returns are normally distributed. 

 

Kurtosis: Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis measures the peakedness of a data 

sample and describes how concentrated the returns are around their mean. A high value of kurtosis means more of the 

data’s variance comes from extreme deviations. 

The kurtosis of a distribution is defined as    

 

                                                                   

4

4

( )E x
k








                                                    (3.12) 

 

 

Where µ is the mean of x, σ is the standard deviation of x, and E(t) represents the expected value of the quantity t. 
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